Haichao Wang , Jianbo Han , Tianyu Wang , Zhiwen Luo , Risto Lahdelma , Katja Granlund , Esa Teppo
{"title":"通过综合热电调峰优化风电利用","authors":"Haichao Wang , Jianbo Han , Tianyu Wang , Zhiwen Luo , Risto Lahdelma , Katja Granlund , Esa Teppo","doi":"10.1016/j.enconman.2025.119828","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of wind power into energy systems is a critical global challenge in the context of limited peak shaving capacity of cogeneration units, observed in many regions with high wind energy potential. This study explores thermoelectric decoupling strategies to enhance wind power utilization and improve system efficiency. Four integrated thermoelectric peak shaving schemes are investigated, including electric boiler, electric heat pump, absorption heat pump, and mechanical heat pump, each integrated with thermal energy storage. A mathematical model was developed and validated using data from a combined heat and power plant in Jilin Province, China, demonstrating its scalability and applicability. The results indicate that the mechanical heat pump and electric heat pump schemes achieved the highest net incomes, with exergic efficiencies exceeding 65 %. The electric boiler scheme achieved the highest wind power utilization, reducing the wind curtailment rate to 0.1 %. All schemes contributed to significant coal savings, with the mechanical heat pump reducing standard coal consumption by 16.91 kg/MWh of electricity and 1.22 kg/GJ of heat. Furthermore, the schemes demonstrated substantial carbon emission reductions and improvements in overall energy efficiency. These findings provide more insights into enhancing the operational flexibility of combined heat and power systems and integrating renewable energy sources, offering a scalable solution for regions seeking to transition to low-carbon energy systems.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"333 ","pages":"Article 119828"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing wind power utilization through integrated thermoelectric peak shaving\",\"authors\":\"Haichao Wang , Jianbo Han , Tianyu Wang , Zhiwen Luo , Risto Lahdelma , Katja Granlund , Esa Teppo\",\"doi\":\"10.1016/j.enconman.2025.119828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of wind power into energy systems is a critical global challenge in the context of limited peak shaving capacity of cogeneration units, observed in many regions with high wind energy potential. This study explores thermoelectric decoupling strategies to enhance wind power utilization and improve system efficiency. Four integrated thermoelectric peak shaving schemes are investigated, including electric boiler, electric heat pump, absorption heat pump, and mechanical heat pump, each integrated with thermal energy storage. A mathematical model was developed and validated using data from a combined heat and power plant in Jilin Province, China, demonstrating its scalability and applicability. The results indicate that the mechanical heat pump and electric heat pump schemes achieved the highest net incomes, with exergic efficiencies exceeding 65 %. The electric boiler scheme achieved the highest wind power utilization, reducing the wind curtailment rate to 0.1 %. All schemes contributed to significant coal savings, with the mechanical heat pump reducing standard coal consumption by 16.91 kg/MWh of electricity and 1.22 kg/GJ of heat. Furthermore, the schemes demonstrated substantial carbon emission reductions and improvements in overall energy efficiency. These findings provide more insights into enhancing the operational flexibility of combined heat and power systems and integrating renewable energy sources, offering a scalable solution for regions seeking to transition to low-carbon energy systems.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"333 \",\"pages\":\"Article 119828\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890425003516\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425003516","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimizing wind power utilization through integrated thermoelectric peak shaving
The integration of wind power into energy systems is a critical global challenge in the context of limited peak shaving capacity of cogeneration units, observed in many regions with high wind energy potential. This study explores thermoelectric decoupling strategies to enhance wind power utilization and improve system efficiency. Four integrated thermoelectric peak shaving schemes are investigated, including electric boiler, electric heat pump, absorption heat pump, and mechanical heat pump, each integrated with thermal energy storage. A mathematical model was developed and validated using data from a combined heat and power plant in Jilin Province, China, demonstrating its scalability and applicability. The results indicate that the mechanical heat pump and electric heat pump schemes achieved the highest net incomes, with exergic efficiencies exceeding 65 %. The electric boiler scheme achieved the highest wind power utilization, reducing the wind curtailment rate to 0.1 %. All schemes contributed to significant coal savings, with the mechanical heat pump reducing standard coal consumption by 16.91 kg/MWh of electricity and 1.22 kg/GJ of heat. Furthermore, the schemes demonstrated substantial carbon emission reductions and improvements in overall energy efficiency. These findings provide more insights into enhancing the operational flexibility of combined heat and power systems and integrating renewable energy sources, offering a scalable solution for regions seeking to transition to low-carbon energy systems.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.