mof衍生的氮配位铁单原子:一种有前途的被动直接乙醇碱性燃料电池ORR电催化剂

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-04-26 DOI:10.1016/j.fuel.2025.135450
Hussein Gharibi , Morteza Kazemi , Mohammad Zhiani , Maryam Jafari , Mohammad Javad Parnian
{"title":"mof衍生的氮配位铁单原子:一种有前途的被动直接乙醇碱性燃料电池ORR电催化剂","authors":"Hussein Gharibi ,&nbsp;Morteza Kazemi ,&nbsp;Mohammad Zhiani ,&nbsp;Maryam Jafari ,&nbsp;Mohammad Javad Parnian","doi":"10.1016/j.fuel.2025.135450","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel electrocatalyst for the oxygen reduction reaction (ORR), featuring single-atom iron-doped nitrogen (Fe-N<sub>x</sub>) embedded in a carbon-based framework. The electrocatalyst was derived from a bimetallic zeolitic imidazole framework (Zn/Fe-BZIF), leveraging the high surface area, tunable coordination environments, stability, and cost-effectiveness of metal–organic frameworks (MOFs). Iron incorporation significantly enhanced the onset potential, positioning the material as a promising candidate for high-performance ORR applications. To achieve atomic-level dispersion and prevent agglomeration, the double solvent method was utilized, encapsulating the iron salt precursor within the hydrophilic pores of ZIF-8. This method ensured precise integration and optimized electrocatalyst efficiency. Following pyrolysis, the Fe-s/NC catalyst exhibited outstanding ORR activity and stability in alkaline media, surpassing commercial Pt/C. The catalyst demonstrated high selectivity for the direct 4e<sup>−</sup> reduction of oxygen to water, achieving an onset potential (E<em><sub>onset</sub></em>) of 1.03 V<em><sub>RHE</sub></em> and a half-wave potential (E<em><sub>1/2</sub></em>) of 0.93 V<em><sub>RHE</sub></em>. Over 40,000 s of chronoamperometric testing, it maintained 90% of its initial current density. Furthermore, the electrocatalyst showed promising performance in a direct ethanol alkaline fuel cell (DEAFC) and in sensor applications at low ethanol concentrations. In air, it achieved an open-circuit voltage (OCV) of 0.920 V with a peak power density (P<em><sub>max</sub></em>) of 14.7 mW cm<sup>−2</sup> at 0.320 V, and in oxygen, it reached an OCV of 0.946 V with P<em><sub>max</sub></em> of 19.3 mW cm<sup>2</sup> at 0.346 V. This research introduced Fe-s/NC as an innovative catalyst to enhance cathode's electrocatalytic performance in passive DEAFCs.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"397 ","pages":"Article 135450"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF-derived nitrogen-coordinated iron single atoms: A promising ORR electrocatalyst for passive direct ethanol alkaline fuel cells\",\"authors\":\"Hussein Gharibi ,&nbsp;Morteza Kazemi ,&nbsp;Mohammad Zhiani ,&nbsp;Maryam Jafari ,&nbsp;Mohammad Javad Parnian\",\"doi\":\"10.1016/j.fuel.2025.135450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel electrocatalyst for the oxygen reduction reaction (ORR), featuring single-atom iron-doped nitrogen (Fe-N<sub>x</sub>) embedded in a carbon-based framework. The electrocatalyst was derived from a bimetallic zeolitic imidazole framework (Zn/Fe-BZIF), leveraging the high surface area, tunable coordination environments, stability, and cost-effectiveness of metal–organic frameworks (MOFs). Iron incorporation significantly enhanced the onset potential, positioning the material as a promising candidate for high-performance ORR applications. To achieve atomic-level dispersion and prevent agglomeration, the double solvent method was utilized, encapsulating the iron salt precursor within the hydrophilic pores of ZIF-8. This method ensured precise integration and optimized electrocatalyst efficiency. Following pyrolysis, the Fe-s/NC catalyst exhibited outstanding ORR activity and stability in alkaline media, surpassing commercial Pt/C. The catalyst demonstrated high selectivity for the direct 4e<sup>−</sup> reduction of oxygen to water, achieving an onset potential (E<em><sub>onset</sub></em>) of 1.03 V<em><sub>RHE</sub></em> and a half-wave potential (E<em><sub>1/2</sub></em>) of 0.93 V<em><sub>RHE</sub></em>. Over 40,000 s of chronoamperometric testing, it maintained 90% of its initial current density. Furthermore, the electrocatalyst showed promising performance in a direct ethanol alkaline fuel cell (DEAFC) and in sensor applications at low ethanol concentrations. In air, it achieved an open-circuit voltage (OCV) of 0.920 V with a peak power density (P<em><sub>max</sub></em>) of 14.7 mW cm<sup>−2</sup> at 0.320 V, and in oxygen, it reached an OCV of 0.946 V with P<em><sub>max</sub></em> of 19.3 mW cm<sup>2</sup> at 0.346 V. This research introduced Fe-s/NC as an innovative catalyst to enhance cathode's electrocatalytic performance in passive DEAFCs.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"397 \",\"pages\":\"Article 135450\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125011755\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125011755","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种用于氧还原反应(ORR)的新型电催化剂,其特征是单原子铁掺杂氮(Fe-Nx)嵌入碳基框架中。电催化剂来源于双金属分子筛咪唑框架(Zn/Fe-BZIF),利用金属有机框架(MOFs)的高表面积、可调节的配位环境、稳定性和成本效益。铁的掺入显著提高了起爆电位,使该材料成为高性能ORR应用的有前途的候选材料。为了达到原子级分散和防止团聚,采用双溶剂法将铁盐前驱体包封在ZIF-8的亲水性孔隙中。该方法保证了精确集成和优化电催化剂效率。热解后,Fe-s/NC催化剂在碱性介质中表现出优异的ORR活性和稳定性,超过了商用Pt/C。该催化剂对氧直接4e还原为水具有很高的选择性,起始电位(Eonset)为1.03 VRHE,半波电位(E1/2)为0.93 VRHE。超过40000秒的计时电流测试,它保持了90%的初始电流密度。此外,该电催化剂在直接乙醇碱性燃料电池(DEAFC)和低乙醇浓度下的传感器应用中表现出了良好的性能。在空气中,它在0.320 V时的开路电压(OCV)为0.920 V,峰值功率密度(Pmax)为14.7 mW cm - 2;在氧气中,它在0.346 V时的开路电压(OCV)为0.946 V,峰值功率密度(Pmax)为19.3 mW cm2。本研究介绍了Fe-s/NC作为一种新型催化剂,以提高被动聋哑阴极的电催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOF-derived nitrogen-coordinated iron single atoms: A promising ORR electrocatalyst for passive direct ethanol alkaline fuel cells
This study presents a novel electrocatalyst for the oxygen reduction reaction (ORR), featuring single-atom iron-doped nitrogen (Fe-Nx) embedded in a carbon-based framework. The electrocatalyst was derived from a bimetallic zeolitic imidazole framework (Zn/Fe-BZIF), leveraging the high surface area, tunable coordination environments, stability, and cost-effectiveness of metal–organic frameworks (MOFs). Iron incorporation significantly enhanced the onset potential, positioning the material as a promising candidate for high-performance ORR applications. To achieve atomic-level dispersion and prevent agglomeration, the double solvent method was utilized, encapsulating the iron salt precursor within the hydrophilic pores of ZIF-8. This method ensured precise integration and optimized electrocatalyst efficiency. Following pyrolysis, the Fe-s/NC catalyst exhibited outstanding ORR activity and stability in alkaline media, surpassing commercial Pt/C. The catalyst demonstrated high selectivity for the direct 4e reduction of oxygen to water, achieving an onset potential (Eonset) of 1.03 VRHE and a half-wave potential (E1/2) of 0.93 VRHE. Over 40,000 s of chronoamperometric testing, it maintained 90% of its initial current density. Furthermore, the electrocatalyst showed promising performance in a direct ethanol alkaline fuel cell (DEAFC) and in sensor applications at low ethanol concentrations. In air, it achieved an open-circuit voltage (OCV) of 0.920 V with a peak power density (Pmax) of 14.7 mW cm−2 at 0.320 V, and in oxygen, it reached an OCV of 0.946 V with Pmax of 19.3 mW cm2 at 0.346 V. This research introduced Fe-s/NC as an innovative catalyst to enhance cathode's electrocatalytic performance in passive DEAFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信