酶、神经类固醇和合成类固醇在神经退行性疾病中的治疗潜力:综述

IF 2.7 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Refik Servi , Ramazan Fazıl Akkoç , Feyza Aksu , Süleyman Servi
{"title":"酶、神经类固醇和合成类固醇在神经退行性疾病中的治疗潜力:综述","authors":"Refik Servi ,&nbsp;Ramazan Fazıl Akkoç ,&nbsp;Feyza Aksu ,&nbsp;Süleyman Servi","doi":"10.1016/j.jsbmb.2025.106766","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodegenerative disorders present a significant challenge to healthcare systems, mainly due to the limited availability of effective treatment options to halt or reverse disease progression. Endogenous steroids synthesized in the central nervous system, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), progesterone (PROG), and allopregnanolone (ALLO), have been identified as potential therapeutic agents for neurodegenerative diseases. Neurosteroids such as ALLO, DHEA, and PROG, as well as their synthetic analogs like Ganaxolene, Fluasterone, and Olexoxime, offer promising effects for conditions such as Alzheimer's disease (AD) and depression. Moreover, Brexanolone and Ganaxolone are synthetic steroids approved for the treatment of postpartum depression and epilepsy, respectively. Neurosteroids such as ALLO are crucial in modulating GABAergic neurotransmission and reducing neuroinflammation. These compounds enhance the activity of GABA-A receptors, leading to increased inhibitory signaling in the brain, which can help regulate mood, cognition, and neuroprotection. Small clinical trials and observational studies indicate that ALLO may have cognitive benefits, but no large-scale, definitive meta-analysis confirms a 20 % improvement in AD patients. Mitochondrial dysfunction plays a vital role in the pathogenesis of numerous neurological diseases due to the high-energy demand and sensitivity of neurons to oxidative stress. Reduced mitochondrial function leads to amyloid-beta plaques and tau tangles accumulation in AD. In Parkinson's disease (PD), mitochondrial dysfunction resulting from the PINK1 or Parkin genes leads to energy deficiencies and the accumulation of toxic byproducts. Mutations in genes such as SOD1, C9orf72, and TDP-43 have been associated with mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS). Moreover, studies on these neurodegenerative diseases suggest that inflammation is not merely a consequence of neurodegeneration but is also an essential factor in this process. Many neurological disorders involve multifaceted interactions between genetics, the environment, and immune responses, making it difficult to pinpoint their exact causes. Future research aims to overcome these hurdles through genetic advances, regenerative medicine, and personalized therapies. Cutting-edge technologies such as artificial intelligence and high-throughput screening are expected to accelerate drug discovery and improve diagnostic accuracy. Increasing collaboration between interdisciplinary fields such as bioinformatics, neuroscience, and immunology will lead to innovative treatment strategies. This comprehensive review discusses the therapeutic effects of enzymes, neurosteroids, and synthetic steroids in different neurodegenerative diseases, particularly AD, PD, ALS, and MS. Potential challenges in the therapeutic use of neurosteroids, such as the limited bioavailability and off-target effects of synthetic steroids, are also discussed, and an up-to-date and comprehensive review of the impact of these steroids on neurodegenerative disorders is presented.</div></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"251 ","pages":"Article 106766"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic potential of enzymes, neurosteroids, and synthetic steroids in neurodegenerative disorders: A critical review\",\"authors\":\"Refik Servi ,&nbsp;Ramazan Fazıl Akkoç ,&nbsp;Feyza Aksu ,&nbsp;Süleyman Servi\",\"doi\":\"10.1016/j.jsbmb.2025.106766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurodegenerative disorders present a significant challenge to healthcare systems, mainly due to the limited availability of effective treatment options to halt or reverse disease progression. Endogenous steroids synthesized in the central nervous system, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), progesterone (PROG), and allopregnanolone (ALLO), have been identified as potential therapeutic agents for neurodegenerative diseases. Neurosteroids such as ALLO, DHEA, and PROG, as well as their synthetic analogs like Ganaxolene, Fluasterone, and Olexoxime, offer promising effects for conditions such as Alzheimer's disease (AD) and depression. Moreover, Brexanolone and Ganaxolone are synthetic steroids approved for the treatment of postpartum depression and epilepsy, respectively. Neurosteroids such as ALLO are crucial in modulating GABAergic neurotransmission and reducing neuroinflammation. These compounds enhance the activity of GABA-A receptors, leading to increased inhibitory signaling in the brain, which can help regulate mood, cognition, and neuroprotection. Small clinical trials and observational studies indicate that ALLO may have cognitive benefits, but no large-scale, definitive meta-analysis confirms a 20 % improvement in AD patients. Mitochondrial dysfunction plays a vital role in the pathogenesis of numerous neurological diseases due to the high-energy demand and sensitivity of neurons to oxidative stress. Reduced mitochondrial function leads to amyloid-beta plaques and tau tangles accumulation in AD. In Parkinson's disease (PD), mitochondrial dysfunction resulting from the PINK1 or Parkin genes leads to energy deficiencies and the accumulation of toxic byproducts. Mutations in genes such as SOD1, C9orf72, and TDP-43 have been associated with mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS). Moreover, studies on these neurodegenerative diseases suggest that inflammation is not merely a consequence of neurodegeneration but is also an essential factor in this process. Many neurological disorders involve multifaceted interactions between genetics, the environment, and immune responses, making it difficult to pinpoint their exact causes. Future research aims to overcome these hurdles through genetic advances, regenerative medicine, and personalized therapies. Cutting-edge technologies such as artificial intelligence and high-throughput screening are expected to accelerate drug discovery and improve diagnostic accuracy. Increasing collaboration between interdisciplinary fields such as bioinformatics, neuroscience, and immunology will lead to innovative treatment strategies. This comprehensive review discusses the therapeutic effects of enzymes, neurosteroids, and synthetic steroids in different neurodegenerative diseases, particularly AD, PD, ALS, and MS. Potential challenges in the therapeutic use of neurosteroids, such as the limited bioavailability and off-target effects of synthetic steroids, are also discussed, and an up-to-date and comprehensive review of the impact of these steroids on neurodegenerative disorders is presented.</div></div>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\"251 \",\"pages\":\"Article 106766\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076025000949\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076025000949","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病对卫生保健系统提出了重大挑战,主要是因为阻止或逆转疾病进展的有效治疗方案的可用性有限。中枢神经系统合成的内源性类固醇,如孕烯醇酮(PREG)、脱氢表雄酮(DHEA)、孕酮(PROG)和异孕烯醇酮(ALLO),已被确定为神经退行性疾病的潜在治疗药物。神经类固醇如ALLO、DHEA和PROG,以及它们的合成类似物如Ganaxolene、Fluasterone和olexex肟,对阿尔茨海默病(AD)和抑郁症等疾病有很好的疗效。此外,Brexanolone和Ganaxolone是分别被批准用于治疗产后抑郁症和癫痫的合成类固醇。神经类固醇如ALLO在调节gaba能神经传递和减少神经炎症中起着至关重要的作用。这些化合物增强GABA-A受体的活性,导致大脑中抑制性信号的增加,这有助于调节情绪、认知和神经保护。小型临床试验和观察性研究表明,ALLO可能具有认知益处,但没有大规模、明确的荟萃分析证实,ALLO对AD患者有20% %的改善。由于神经元对氧化应激的高能量需求和敏感性,线粒体功能障碍在许多神经系统疾病的发病机制中起着至关重要的作用。线粒体功能降低导致AD中淀粉样斑块和tau缠结的积累。在帕金森病(PD)中,由PINK1或Parkin基因引起的线粒体功能障碍导致能量不足和有毒副产物的积累。SOD1、C9orf72和TDP-43等基因突变与肌萎缩性侧索硬化症(ALS)的线粒体功能障碍有关。此外,对这些神经退行性疾病的研究表明,炎症不仅是神经退行性疾病的结果,而且也是这一过程的重要因素。许多神经系统疾病涉及遗传、环境和免疫反应之间的多方面相互作用,因此很难确定其确切原因。未来的研究旨在通过基因进步、再生医学和个性化治疗来克服这些障碍。人工智能和高通量筛选等尖端技术有望加速药物发现并提高诊断准确性。生物信息学、神经科学和免疫学等跨学科领域之间的合作将带来创新的治疗策略。这篇综合综述讨论了酶、神经类固醇和合成类固醇在不同神经退行性疾病中的治疗作用,特别是AD、PD、ALS和ms。还讨论了神经类固醇治疗使用中的潜在挑战,如有限的生物利用度和合成类固醇的脱靶效应,并介绍了这些类固醇对神经退行性疾病的最新综合综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Therapeutic potential of enzymes, neurosteroids, and synthetic steroids in neurodegenerative disorders: A critical review
Neurodegenerative disorders present a significant challenge to healthcare systems, mainly due to the limited availability of effective treatment options to halt or reverse disease progression. Endogenous steroids synthesized in the central nervous system, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), progesterone (PROG), and allopregnanolone (ALLO), have been identified as potential therapeutic agents for neurodegenerative diseases. Neurosteroids such as ALLO, DHEA, and PROG, as well as their synthetic analogs like Ganaxolene, Fluasterone, and Olexoxime, offer promising effects for conditions such as Alzheimer's disease (AD) and depression. Moreover, Brexanolone and Ganaxolone are synthetic steroids approved for the treatment of postpartum depression and epilepsy, respectively. Neurosteroids such as ALLO are crucial in modulating GABAergic neurotransmission and reducing neuroinflammation. These compounds enhance the activity of GABA-A receptors, leading to increased inhibitory signaling in the brain, which can help regulate mood, cognition, and neuroprotection. Small clinical trials and observational studies indicate that ALLO may have cognitive benefits, but no large-scale, definitive meta-analysis confirms a 20 % improvement in AD patients. Mitochondrial dysfunction plays a vital role in the pathogenesis of numerous neurological diseases due to the high-energy demand and sensitivity of neurons to oxidative stress. Reduced mitochondrial function leads to amyloid-beta plaques and tau tangles accumulation in AD. In Parkinson's disease (PD), mitochondrial dysfunction resulting from the PINK1 or Parkin genes leads to energy deficiencies and the accumulation of toxic byproducts. Mutations in genes such as SOD1, C9orf72, and TDP-43 have been associated with mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS). Moreover, studies on these neurodegenerative diseases suggest that inflammation is not merely a consequence of neurodegeneration but is also an essential factor in this process. Many neurological disorders involve multifaceted interactions between genetics, the environment, and immune responses, making it difficult to pinpoint their exact causes. Future research aims to overcome these hurdles through genetic advances, regenerative medicine, and personalized therapies. Cutting-edge technologies such as artificial intelligence and high-throughput screening are expected to accelerate drug discovery and improve diagnostic accuracy. Increasing collaboration between interdisciplinary fields such as bioinformatics, neuroscience, and immunology will lead to innovative treatment strategies. This comprehensive review discusses the therapeutic effects of enzymes, neurosteroids, and synthetic steroids in different neurodegenerative diseases, particularly AD, PD, ALS, and MS. Potential challenges in the therapeutic use of neurosteroids, such as the limited bioavailability and off-target effects of synthetic steroids, are also discussed, and an up-to-date and comprehensive review of the impact of these steroids on neurodegenerative disorders is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
2.40%
发文量
113
审稿时长
46 days
期刊介绍: The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信