计算研究表明,二维Janus Kagome晶格Nb3TeCl7具有优异的光催化水裂解性能

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Wen-yu Fang , Sheng-an Chen , Kai Jin , Chun-jing Liu
{"title":"计算研究表明,二维Janus Kagome晶格Nb3TeCl7具有优异的光催化水裂解性能","authors":"Wen-yu Fang ,&nbsp;Sheng-an Chen ,&nbsp;Kai Jin ,&nbsp;Chun-jing Liu","doi":"10.1016/j.ijhydene.2025.04.309","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic water splitting is crucial for alleviating the energy crisis, and two-dimensional materials offer considerable advantages in this application. In this study, we systematically investigate the stability and photocatalytic performance of Janus Kagome Nb<sub>3</sub>TeCl<sub>7</sub> based on first-principles calculations. Our results reveal that Nb<sub>3</sub>TeCl<sub>7</sub> exhibits excellent mechanical, dynamic, and thermal stability, with a remarkable thermal stability up to 1500 K. As a narrow-bandgap semiconductor (1.72 eV), Nb<sub>3</sub>TeCl<sub>7</sub> delivers appropriate band edges that align well with the potentials for H<sup>+</sup>/H<sub>2</sub> and O<sub>2</sub>/H<sub>2</sub>O, along with the electron and hole mobilities of 467.30 and 32.77 cm<sup>2</sup>/Vs, respectively. Additionally, it demonstrates strong light absorption of ∼10<sup>5</sup> cm<sup>−1</sup>, covering nearly the entire visible and ultraviolet regions of the solar spectrum. The solar-to-hydrogen efficiency reaches an impressive 18 %, surpassing most other 2D photocatalytic water splitting candidates. These findings suggest that single-layer Nb<sub>3</sub>TeCl<sub>7</sub> is a promising material for efficient photocatalytic hydrogen production.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"129 ","pages":"Pages 291-296"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational study reveals the exceptional photocatalytic water splitting performance of two-dimensional Janus Kagome lattice Nb3TeCl7\",\"authors\":\"Wen-yu Fang ,&nbsp;Sheng-an Chen ,&nbsp;Kai Jin ,&nbsp;Chun-jing Liu\",\"doi\":\"10.1016/j.ijhydene.2025.04.309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalytic water splitting is crucial for alleviating the energy crisis, and two-dimensional materials offer considerable advantages in this application. In this study, we systematically investigate the stability and photocatalytic performance of Janus Kagome Nb<sub>3</sub>TeCl<sub>7</sub> based on first-principles calculations. Our results reveal that Nb<sub>3</sub>TeCl<sub>7</sub> exhibits excellent mechanical, dynamic, and thermal stability, with a remarkable thermal stability up to 1500 K. As a narrow-bandgap semiconductor (1.72 eV), Nb<sub>3</sub>TeCl<sub>7</sub> delivers appropriate band edges that align well with the potentials for H<sup>+</sup>/H<sub>2</sub> and O<sub>2</sub>/H<sub>2</sub>O, along with the electron and hole mobilities of 467.30 and 32.77 cm<sup>2</sup>/Vs, respectively. Additionally, it demonstrates strong light absorption of ∼10<sup>5</sup> cm<sup>−1</sup>, covering nearly the entire visible and ultraviolet regions of the solar spectrum. The solar-to-hydrogen efficiency reaches an impressive 18 %, surpassing most other 2D photocatalytic water splitting candidates. These findings suggest that single-layer Nb<sub>3</sub>TeCl<sub>7</sub> is a promising material for efficient photocatalytic hydrogen production.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"129 \",\"pages\":\"Pages 291-296\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925019974\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925019974","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化水分解对于缓解能源危机至关重要,而二维材料在这一应用中具有相当大的优势。在本研究中,我们基于第一性原理计算系统地研究了Janus Kagome Nb3TeCl7的稳定性和光催化性能。结果表明,Nb3TeCl7具有优异的机械稳定性、动态稳定性和热稳定性,在1500 K温度下具有显著的热稳定性。作为一种窄带隙半导体(1.72 eV), Nb3TeCl7提供了合适的带边,与H+/H2和O2/H2O的电位很好地匹配,电子和空穴迁移率分别为467.30和32.77 cm2/Vs。此外,它表现出强烈的光吸收~ 105 cm−1,覆盖了太阳光谱的几乎整个可见和紫外线区域。太阳能制氢效率达到了令人印象深刻的18%,超过了大多数其他2D光催化水分解候选方案。这些发现表明单层Nb3TeCl7是一种很有前途的高效光催化制氢材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational study reveals the exceptional photocatalytic water splitting performance of two-dimensional Janus Kagome lattice Nb3TeCl7

Computational study reveals the exceptional photocatalytic water splitting performance of two-dimensional Janus Kagome lattice Nb3TeCl7
Photocatalytic water splitting is crucial for alleviating the energy crisis, and two-dimensional materials offer considerable advantages in this application. In this study, we systematically investigate the stability and photocatalytic performance of Janus Kagome Nb3TeCl7 based on first-principles calculations. Our results reveal that Nb3TeCl7 exhibits excellent mechanical, dynamic, and thermal stability, with a remarkable thermal stability up to 1500 K. As a narrow-bandgap semiconductor (1.72 eV), Nb3TeCl7 delivers appropriate band edges that align well with the potentials for H+/H2 and O2/H2O, along with the electron and hole mobilities of 467.30 and 32.77 cm2/Vs, respectively. Additionally, it demonstrates strong light absorption of ∼105 cm−1, covering nearly the entire visible and ultraviolet regions of the solar spectrum. The solar-to-hydrogen efficiency reaches an impressive 18 %, surpassing most other 2D photocatalytic water splitting candidates. These findings suggest that single-layer Nb3TeCl7 is a promising material for efficient photocatalytic hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信