压缩LaNi3·6Mn0·3Al0·4Co0.7粉末的吸氢/解吸行为

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Sihem Belkhiria , Chaker Briki , Abdelhakim Settar , Abeer M. Beagan , Abdelmajid Jemni
{"title":"压缩LaNi3·6Mn0·3Al0·4Co0.7粉末的吸氢/解吸行为","authors":"Sihem Belkhiria ,&nbsp;Chaker Briki ,&nbsp;Abdelhakim Settar ,&nbsp;Abeer M. Beagan ,&nbsp;Abdelmajid Jemni","doi":"10.1016/j.ijhydene.2025.04.272","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behavior of metal hydride powders in storage systems is profoundly influenced by the volumetric changes of individual grains as they expand and contract during reversible hydrogen absorption and desorption. These changes induce mechanical stresses on the storage tank walls. This study examines the expansion and contraction behavior of pellets compacted from LaNi<sub>3</sub><sub>·</sub><sub>6</sub>Mn<sub>0</sub><sub>·</sub><sub>3</sub>Al<sub>0</sub><sub>·</sub><sub>4</sub>Co<sub>0.7</sub> hydride during hydrogen sorption cycles. The experimental investigation focuses on volume evolution, hydrogen storage capacity, temperature effects, and radial deformation of the pellets during absorption and desorption processes. The results reveal that during hydrogenation-dehydrogenation cycles, the compacted LaNi<sub>3</sub><sub>·</sub><sub>6</sub>Mn<sub>0</sub><sub>·</sub><sub>3</sub>Al<sub>0</sub><sub>·</sub><sub>4</sub>Co<sub>0.7</sub> pellet undergoes radial expansion within a stainless steel tank, with a maximum diameter increase of 2.5 % at a pressure of 30 bar and a temperature of 50 °C. Notably, increasing the temperature from 25 °C to 50 °C reduced the hydrogen storage time by 20 %, a result attributed to the alloy's specific reaction kinetics. These insights are crucial for enhancing the design and efficiency of metal hydride-based hydrogen storage systems.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"130 ","pages":"Pages 381-389"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen absorption / desorption behavior in compacted LaNi3·6Mn0·3Al0·4Co0.7 powder\",\"authors\":\"Sihem Belkhiria ,&nbsp;Chaker Briki ,&nbsp;Abdelhakim Settar ,&nbsp;Abeer M. Beagan ,&nbsp;Abdelmajid Jemni\",\"doi\":\"10.1016/j.ijhydene.2025.04.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical behavior of metal hydride powders in storage systems is profoundly influenced by the volumetric changes of individual grains as they expand and contract during reversible hydrogen absorption and desorption. These changes induce mechanical stresses on the storage tank walls. This study examines the expansion and contraction behavior of pellets compacted from LaNi<sub>3</sub><sub>·</sub><sub>6</sub>Mn<sub>0</sub><sub>·</sub><sub>3</sub>Al<sub>0</sub><sub>·</sub><sub>4</sub>Co<sub>0.7</sub> hydride during hydrogen sorption cycles. The experimental investigation focuses on volume evolution, hydrogen storage capacity, temperature effects, and radial deformation of the pellets during absorption and desorption processes. The results reveal that during hydrogenation-dehydrogenation cycles, the compacted LaNi<sub>3</sub><sub>·</sub><sub>6</sub>Mn<sub>0</sub><sub>·</sub><sub>3</sub>Al<sub>0</sub><sub>·</sub><sub>4</sub>Co<sub>0.7</sub> pellet undergoes radial expansion within a stainless steel tank, with a maximum diameter increase of 2.5 % at a pressure of 30 bar and a temperature of 50 °C. Notably, increasing the temperature from 25 °C to 50 °C reduced the hydrogen storage time by 20 %, a result attributed to the alloy's specific reaction kinetics. These insights are crucial for enhancing the design and efficiency of metal hydride-based hydrogen storage systems.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"130 \",\"pages\":\"Pages 381-389\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925019524\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925019524","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在可逆吸氢和解吸过程中,金属氢化物粉末的体积变化对其力学行为有着深刻的影响。这些变化引起储罐壁上的机械应力。本研究考察了由LaNi3·6Mn0·3Al0·4Co0.7氢化物压实的球团在吸氢循环中的膨胀和收缩行为。实验研究的重点是颗粒在吸收和解吸过程中的体积演变、储氢能力、温度效应和径向变形。结果表明:在加氢-脱氢循环过程中,压实后的LaNi3·6Mn0·3Al0·4Co0.7球团在不锈钢罐中径向膨胀,在压力为30 bar、温度为50℃的条件下,球团直径最大增大2.5%;值得注意的是,将温度从25°C提高到50°C,氢的储存时间缩短了20%,这归因于合金的特定反应动力学。这些见解对于提高基于金属氢化物的储氢系统的设计和效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen absorption / desorption behavior in compacted LaNi3·6Mn0·3Al0·4Co0.7 powder
The mechanical behavior of metal hydride powders in storage systems is profoundly influenced by the volumetric changes of individual grains as they expand and contract during reversible hydrogen absorption and desorption. These changes induce mechanical stresses on the storage tank walls. This study examines the expansion and contraction behavior of pellets compacted from LaNi3·6Mn0·3Al0·4Co0.7 hydride during hydrogen sorption cycles. The experimental investigation focuses on volume evolution, hydrogen storage capacity, temperature effects, and radial deformation of the pellets during absorption and desorption processes. The results reveal that during hydrogenation-dehydrogenation cycles, the compacted LaNi3·6Mn0·3Al0·4Co0.7 pellet undergoes radial expansion within a stainless steel tank, with a maximum diameter increase of 2.5 % at a pressure of 30 bar and a temperature of 50 °C. Notably, increasing the temperature from 25 °C to 50 °C reduced the hydrogen storage time by 20 %, a result attributed to the alloy's specific reaction kinetics. These insights are crucial for enhancing the design and efficiency of metal hydride-based hydrogen storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信