Ali Rafat , Khadijeh Dizaji Asl , Zeinab Mazloumi , Mehdi Talebi , Hojjatollah Nozad Charoudeh
{"title":"自然杀伤细胞联合端粒酶抑制诱导急性髓系白血病细胞凋亡","authors":"Ali Rafat , Khadijeh Dizaji Asl , Zeinab Mazloumi , Mehdi Talebi , Hojjatollah Nozad Charoudeh","doi":"10.1016/j.bbrep.2025.102027","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Recent trends in developing new treatments for cancers, highlight the use of immune cells particularly Natural Killer (NK) cells, as promising therapeutic strategies. While NK cells exhibit significant anti-tumor effects, their effectiveness is often limited. This study investigated the impact of BIBR1532, a human telomerase reverse transcriptase (hTERT) inhibitor, on improving the cytotoxicity of NK cells against Acute Myeloid Leukemia (AML) cells.</div></div><div><h3>Methods</h3><div>Primary AML cells and Kg-1a cell lines were cultured and treated with the half-maximal inhibitory concentration (IC50) of BIBR1532 for 48 h. The treated cells were then co-cultured with NK cells, after which cytotoxicity, cell proliferation, and apoptosis were assessed using Annexin V/7-AAD and Ki-67 expression analysis. Finally, apoptosis-related genes and proteins, hTERT gene and caspase 3/7 activity were studied.</div></div><div><h3>Results</h3><div>The Telomerase Inhibition (TI) in primary AML and Kg-1a cells with IC50 values of 38.75 μM and 57.64 μM, respectively, sensitized the AML cells and enhanced the anti-proliferative effects of NK cells. The combination of BIBR1532 and NK cells led to increased apoptosis, as indicated by the upregulation of the Bax and Bad genes, an increased Bax/Bcl-2 ratio, caspase 3/7 activity, Bax protein and a downregulation of mRNA expression levels of Bcl-2, Bcl-xl and decreased Bcl-2 protein.</div></div><div><h3>Conclusion</h3><div>The findings of this study demonstrate that the concurrent application of BIBR1532 and NK cells promotes apoptosis and reduces proliferation by targeting apoptosis-related genes and proteins such as Bax and Bcl-2.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102027"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural killer cells in combination with the inhibition of telomerase induced apoptosis in Acute Myeloid Leukemia cells\",\"authors\":\"Ali Rafat , Khadijeh Dizaji Asl , Zeinab Mazloumi , Mehdi Talebi , Hojjatollah Nozad Charoudeh\",\"doi\":\"10.1016/j.bbrep.2025.102027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Recent trends in developing new treatments for cancers, highlight the use of immune cells particularly Natural Killer (NK) cells, as promising therapeutic strategies. While NK cells exhibit significant anti-tumor effects, their effectiveness is often limited. This study investigated the impact of BIBR1532, a human telomerase reverse transcriptase (hTERT) inhibitor, on improving the cytotoxicity of NK cells against Acute Myeloid Leukemia (AML) cells.</div></div><div><h3>Methods</h3><div>Primary AML cells and Kg-1a cell lines were cultured and treated with the half-maximal inhibitory concentration (IC50) of BIBR1532 for 48 h. The treated cells were then co-cultured with NK cells, after which cytotoxicity, cell proliferation, and apoptosis were assessed using Annexin V/7-AAD and Ki-67 expression analysis. Finally, apoptosis-related genes and proteins, hTERT gene and caspase 3/7 activity were studied.</div></div><div><h3>Results</h3><div>The Telomerase Inhibition (TI) in primary AML and Kg-1a cells with IC50 values of 38.75 μM and 57.64 μM, respectively, sensitized the AML cells and enhanced the anti-proliferative effects of NK cells. The combination of BIBR1532 and NK cells led to increased apoptosis, as indicated by the upregulation of the Bax and Bad genes, an increased Bax/Bcl-2 ratio, caspase 3/7 activity, Bax protein and a downregulation of mRNA expression levels of Bcl-2, Bcl-xl and decreased Bcl-2 protein.</div></div><div><h3>Conclusion</h3><div>The findings of this study demonstrate that the concurrent application of BIBR1532 and NK cells promotes apoptosis and reduces proliferation by targeting apoptosis-related genes and proteins such as Bax and Bcl-2.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"42 \",\"pages\":\"Article 102027\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Natural killer cells in combination with the inhibition of telomerase induced apoptosis in Acute Myeloid Leukemia cells
Background
Recent trends in developing new treatments for cancers, highlight the use of immune cells particularly Natural Killer (NK) cells, as promising therapeutic strategies. While NK cells exhibit significant anti-tumor effects, their effectiveness is often limited. This study investigated the impact of BIBR1532, a human telomerase reverse transcriptase (hTERT) inhibitor, on improving the cytotoxicity of NK cells against Acute Myeloid Leukemia (AML) cells.
Methods
Primary AML cells and Kg-1a cell lines were cultured and treated with the half-maximal inhibitory concentration (IC50) of BIBR1532 for 48 h. The treated cells were then co-cultured with NK cells, after which cytotoxicity, cell proliferation, and apoptosis were assessed using Annexin V/7-AAD and Ki-67 expression analysis. Finally, apoptosis-related genes and proteins, hTERT gene and caspase 3/7 activity were studied.
Results
The Telomerase Inhibition (TI) in primary AML and Kg-1a cells with IC50 values of 38.75 μM and 57.64 μM, respectively, sensitized the AML cells and enhanced the anti-proliferative effects of NK cells. The combination of BIBR1532 and NK cells led to increased apoptosis, as indicated by the upregulation of the Bax and Bad genes, an increased Bax/Bcl-2 ratio, caspase 3/7 activity, Bax protein and a downregulation of mRNA expression levels of Bcl-2, Bcl-xl and decreased Bcl-2 protein.
Conclusion
The findings of this study demonstrate that the concurrent application of BIBR1532 and NK cells promotes apoptosis and reduces proliferation by targeting apoptosis-related genes and proteins such as Bax and Bcl-2.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.