NMDA受体:耳鸣的下一个治疗靶点?

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chenhao Che, Yongzhen Wu, Shan Sun
{"title":"NMDA受体:耳鸣的下一个治疗靶点?","authors":"Chenhao Che,&nbsp;Yongzhen Wu,&nbsp;Shan Sun","doi":"10.1016/j.bbrep.2025.102029","DOIUrl":null,"url":null,"abstract":"<div><div>Tinnitus, a common otological symptom, lacks clinically approved pharmacological treatments, highlighting an urgent unmet need. This review explores the potential role of NMDARs, key glutamate receptors in the auditory system, in tinnitus pathophysiology, including excitotoxicity, synaptic plasticity, and neuropathic pain. Alterations in NMDAR variants with different subunit compositions during development have also been implicated in the onset of tinnitus. Clinical trials of NMDAR antagonists, such as acamprosate, caroverine, neramexane, and AM-101, have shown promising results, though none are yet approved. These findings highlight the need for further research on NMDARs to advance the development of next-generation targeted pharmacological therapies for tinnitus.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102029"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMDA Receptors: Next therapeutic targets for Tinnitus?\",\"authors\":\"Chenhao Che,&nbsp;Yongzhen Wu,&nbsp;Shan Sun\",\"doi\":\"10.1016/j.bbrep.2025.102029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tinnitus, a common otological symptom, lacks clinically approved pharmacological treatments, highlighting an urgent unmet need. This review explores the potential role of NMDARs, key glutamate receptors in the auditory system, in tinnitus pathophysiology, including excitotoxicity, synaptic plasticity, and neuropathic pain. Alterations in NMDAR variants with different subunit compositions during development have also been implicated in the onset of tinnitus. Clinical trials of NMDAR antagonists, such as acamprosate, caroverine, neramexane, and AM-101, have shown promising results, though none are yet approved. These findings highlight the need for further research on NMDARs to advance the development of next-generation targeted pharmacological therapies for tinnitus.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"42 \",\"pages\":\"Article 102029\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耳鸣是一种常见的耳科症状,缺乏临床批准的药物治疗,突出了迫切的未满足的需求。本文探讨了听觉系统中关键的谷氨酸受体NMDARs在耳鸣病理生理中的潜在作用,包括兴奋毒性、突触可塑性和神经性疼痛。发育过程中具有不同亚基组成的NMDAR变异的改变也与耳鸣的发病有关。NMDAR拮抗剂的临床试验,如阿camproate、caroverine、neramexane和AM-101,已经显示出有希望的结果,尽管尚未批准。这些发现强调了进一步研究NMDARs以推进下一代耳鸣靶向药物治疗的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NMDA Receptors: Next therapeutic targets for Tinnitus?

NMDA Receptors: Next therapeutic targets for Tinnitus?
Tinnitus, a common otological symptom, lacks clinically approved pharmacological treatments, highlighting an urgent unmet need. This review explores the potential role of NMDARs, key glutamate receptors in the auditory system, in tinnitus pathophysiology, including excitotoxicity, synaptic plasticity, and neuropathic pain. Alterations in NMDAR variants with different subunit compositions during development have also been implicated in the onset of tinnitus. Clinical trials of NMDAR antagonists, such as acamprosate, caroverine, neramexane, and AM-101, have shown promising results, though none are yet approved. These findings highlight the need for further research on NMDARs to advance the development of next-generation targeted pharmacological therapies for tinnitus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信