Baasanjav Uranbileg , Yoko Hoshino , Mariko Ezaka , Makoto Kurano , Kanji Uchida , Yutaka Yatomi , Nobuko Ito
{"title":"大鼠脊髓狭窄模型中鞘脂代谢的研究","authors":"Baasanjav Uranbileg , Yoko Hoshino , Mariko Ezaka , Makoto Kurano , Kanji Uchida , Yutaka Yatomi , Nobuko Ito","doi":"10.1016/j.bbrep.2025.102025","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Lumbar spinal canal stenosis (LSCS) plays a crucial role in neurogenic claudication and neuropathic pain. Recent studies suggest that changes in sphingolipid metabolism are linked to neuropathic pain. To explore the association between sphingolipids and LSCS, we measured the levels of sphingolipids and sphingolipid-associated molecules in an animal model of cauda equina compression (CEC), a typical type of LSCS.</div></div><div><h3>Methods</h3><div>By placing silicon blocks within the lumbar epidural space, CEC model were constructed in which motor disfunction had already been confirmed in our previous study. Quantitative measurements of various sphingolipids were conducted using LC-MS/MS in spinal cord and cerebrospinal fluid (CSF) samples on days 1, 7, and 28 following insertion of silicon blocks. Additionally, gene expression was analyzed in spinal cord tissue.</div></div><div><h3>Results</h3><div>In the CEC model, there was a significant increase ceramide levels in the CSF with upregulation of ceramide synthase 1 in the spinal cord tissue samples on day 1. Further, S1P levels in the CSF increased on day 7 and in the spinal cord significantly increased on day 28, and there was an increase in mRNA expression levels of sphingosine kinases (SphK)1 on days 1,7, and 28, while SphK2 on days 7 and 28. Regarding S1P receptors, there was an increase in mRNA expression levels of S1P1 on days 1,7, and 28 and S1P3 on day1.</div></div><div><h3>Conclusion</h3><div>The production and activation of the sphingolipid signaling pathway could play a pivotal role in neuropathic pain related to LSCS.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102025"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolism of sphingolipids in a rat spinal cord stenosis model\",\"authors\":\"Baasanjav Uranbileg , Yoko Hoshino , Mariko Ezaka , Makoto Kurano , Kanji Uchida , Yutaka Yatomi , Nobuko Ito\",\"doi\":\"10.1016/j.bbrep.2025.102025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Lumbar spinal canal stenosis (LSCS) plays a crucial role in neurogenic claudication and neuropathic pain. Recent studies suggest that changes in sphingolipid metabolism are linked to neuropathic pain. To explore the association between sphingolipids and LSCS, we measured the levels of sphingolipids and sphingolipid-associated molecules in an animal model of cauda equina compression (CEC), a typical type of LSCS.</div></div><div><h3>Methods</h3><div>By placing silicon blocks within the lumbar epidural space, CEC model were constructed in which motor disfunction had already been confirmed in our previous study. Quantitative measurements of various sphingolipids were conducted using LC-MS/MS in spinal cord and cerebrospinal fluid (CSF) samples on days 1, 7, and 28 following insertion of silicon blocks. Additionally, gene expression was analyzed in spinal cord tissue.</div></div><div><h3>Results</h3><div>In the CEC model, there was a significant increase ceramide levels in the CSF with upregulation of ceramide synthase 1 in the spinal cord tissue samples on day 1. Further, S1P levels in the CSF increased on day 7 and in the spinal cord significantly increased on day 28, and there was an increase in mRNA expression levels of sphingosine kinases (SphK)1 on days 1,7, and 28, while SphK2 on days 7 and 28. Regarding S1P receptors, there was an increase in mRNA expression levels of S1P1 on days 1,7, and 28 and S1P3 on day1.</div></div><div><h3>Conclusion</h3><div>The production and activation of the sphingolipid signaling pathway could play a pivotal role in neuropathic pain related to LSCS.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"42 \",\"pages\":\"Article 102025\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolism of sphingolipids in a rat spinal cord stenosis model
Background
Lumbar spinal canal stenosis (LSCS) plays a crucial role in neurogenic claudication and neuropathic pain. Recent studies suggest that changes in sphingolipid metabolism are linked to neuropathic pain. To explore the association between sphingolipids and LSCS, we measured the levels of sphingolipids and sphingolipid-associated molecules in an animal model of cauda equina compression (CEC), a typical type of LSCS.
Methods
By placing silicon blocks within the lumbar epidural space, CEC model were constructed in which motor disfunction had already been confirmed in our previous study. Quantitative measurements of various sphingolipids were conducted using LC-MS/MS in spinal cord and cerebrospinal fluid (CSF) samples on days 1, 7, and 28 following insertion of silicon blocks. Additionally, gene expression was analyzed in spinal cord tissue.
Results
In the CEC model, there was a significant increase ceramide levels in the CSF with upregulation of ceramide synthase 1 in the spinal cord tissue samples on day 1. Further, S1P levels in the CSF increased on day 7 and in the spinal cord significantly increased on day 28, and there was an increase in mRNA expression levels of sphingosine kinases (SphK)1 on days 1,7, and 28, while SphK2 on days 7 and 28. Regarding S1P receptors, there was an increase in mRNA expression levels of S1P1 on days 1,7, and 28 and S1P3 on day1.
Conclusion
The production and activation of the sphingolipid signaling pathway could play a pivotal role in neuropathic pain related to LSCS.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.