Francesca Danielli , Qingbo Wang , Francesca Berti , Adelaide Nespoli , Tomaso Villa , Lorenza Petrini , Chao Gao
{"title":"建立可靠的生物医学用激光粉末床熔合Ti6Al4V小梁结构有限元模型","authors":"Francesca Danielli , Qingbo Wang , Francesca Berti , Adelaide Nespoli , Tomaso Villa , Lorenza Petrini , Chao Gao","doi":"10.1016/j.jmbbm.2025.107022","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing technologies are commonly adopted for the fabrication of trabecular-based orthopedic prostheses made of titanium alloys due to their ability in producing complex and intricate designs. In this scenario, the use of finite element models represents a powerful tool for designing such devices and assessing their biomechanical behavior. Nevertheless, the usefulness of a numerical approach depends on the reliability of the adopted models, a crucial aspect when dealing with trabecular structures present within orthopedic implants. Indeed, the description of their effective geometry and the characterization of the material mechanical properties represent a tough challenge that hinders the development of high-fidelity numerical models. Specifically, the small dimensions of the trabeculae approach the accuracy limit of additive manufacturing leading to relevant uncertainties in their production. The existing studies dealing with the finite element modeling of 3D-printed trabecular structures often neglect the geometrical and material peculiarities of thin struts, making questionable the reliability of the developed numerical models. Namely, they either make simplifications in describing the mechanical properties of the material or do not account for realistic geometries. To address this gap, the present work aims to propose a systematic approach that achieves the development of accurate finite element models of trabecular structures, by integrating experimental activities with numerical simulations. This approach is exemplified by using two distinct trabecular structures used in the design of a custom talus prosthesis.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 107022"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the development of reliable finite element models of Ti6Al4V trabecular structures fabricated via laser powder bed fusion for biomedical applications\",\"authors\":\"Francesca Danielli , Qingbo Wang , Francesca Berti , Adelaide Nespoli , Tomaso Villa , Lorenza Petrini , Chao Gao\",\"doi\":\"10.1016/j.jmbbm.2025.107022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing technologies are commonly adopted for the fabrication of trabecular-based orthopedic prostheses made of titanium alloys due to their ability in producing complex and intricate designs. In this scenario, the use of finite element models represents a powerful tool for designing such devices and assessing their biomechanical behavior. Nevertheless, the usefulness of a numerical approach depends on the reliability of the adopted models, a crucial aspect when dealing with trabecular structures present within orthopedic implants. Indeed, the description of their effective geometry and the characterization of the material mechanical properties represent a tough challenge that hinders the development of high-fidelity numerical models. Specifically, the small dimensions of the trabeculae approach the accuracy limit of additive manufacturing leading to relevant uncertainties in their production. The existing studies dealing with the finite element modeling of 3D-printed trabecular structures often neglect the geometrical and material peculiarities of thin struts, making questionable the reliability of the developed numerical models. Namely, they either make simplifications in describing the mechanical properties of the material or do not account for realistic geometries. To address this gap, the present work aims to propose a systematic approach that achieves the development of accurate finite element models of trabecular structures, by integrating experimental activities with numerical simulations. This approach is exemplified by using two distinct trabecular structures used in the design of a custom talus prosthesis.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"168 \",\"pages\":\"Article 107022\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125001389\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001389","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Towards the development of reliable finite element models of Ti6Al4V trabecular structures fabricated via laser powder bed fusion for biomedical applications
Additive manufacturing technologies are commonly adopted for the fabrication of trabecular-based orthopedic prostheses made of titanium alloys due to their ability in producing complex and intricate designs. In this scenario, the use of finite element models represents a powerful tool for designing such devices and assessing their biomechanical behavior. Nevertheless, the usefulness of a numerical approach depends on the reliability of the adopted models, a crucial aspect when dealing with trabecular structures present within orthopedic implants. Indeed, the description of their effective geometry and the characterization of the material mechanical properties represent a tough challenge that hinders the development of high-fidelity numerical models. Specifically, the small dimensions of the trabeculae approach the accuracy limit of additive manufacturing leading to relevant uncertainties in their production. The existing studies dealing with the finite element modeling of 3D-printed trabecular structures often neglect the geometrical and material peculiarities of thin struts, making questionable the reliability of the developed numerical models. Namely, they either make simplifications in describing the mechanical properties of the material or do not account for realistic geometries. To address this gap, the present work aims to propose a systematic approach that achieves the development of accurate finite element models of trabecular structures, by integrating experimental activities with numerical simulations. This approach is exemplified by using two distinct trabecular structures used in the design of a custom talus prosthesis.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.