通过控制氧化石墨烯的热还原和多壁碳纳米管的嵌入,实现了石墨烯薄膜的高平面导热性

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xun Li , Tianhao Zhang , Ruxuan Zhang , Jing Liu , Tian Tian , Hexiang Han , Kangli Cao , Yanjie Su
{"title":"通过控制氧化石墨烯的热还原和多壁碳纳米管的嵌入,实现了石墨烯薄膜的高平面导热性","authors":"Xun Li ,&nbsp;Tianhao Zhang ,&nbsp;Ruxuan Zhang ,&nbsp;Jing Liu ,&nbsp;Tian Tian ,&nbsp;Hexiang Han ,&nbsp;Kangli Cao ,&nbsp;Yanjie Su","doi":"10.1016/j.apsusc.2025.163297","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal conductivity graphene films using graphene oxide (GO) as the raw material experience an expansion in interlamellar spacing and weaker compactness attributed to the decomposition of oxygen-containing functional groups during thermal reduction. The process indirectly influences the cross-plane thermal conductivity (<em>K</em><sub>⊥</sub>), resulting in limitations for the potential applications. In this work, a graphene film with high <em>K</em><sub>⊥</sub> value<!--> <!-->is achieved by integration of<!--> <!-->controlled thermal reduction of GO film and the strategic embedding multi-walled carbon nanotubes (MWCNTs) into graphene layers. The results demonstrate that a moderate thermal reduction rate (3 °C min<sup>−1</sup>) helps to avoid excessive morphological evolution in GO. Simultaneously, the uniformly embedded MWCNTs network acts as bridging structures, which can effectively repair the point defects in graphene and significantly reduce the interlamellar interfacial thermal resistance. After optimization of the thermal reduction process and the MWCNTs loading, the <em>K</em><sub>⊥</sub> value of the MWCNT-graphene film at room temperature is 23.28 W m<sup>−1</sup> K<sup>−1</sup>, which is 4.82 times higher than that of pristine graphene. This work deepens the understanding of the GO thermal reduction process and offers valuable guidance for the design of advanced graphene composite films with superior cross-plane thermal management capabilities.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"702 ","pages":"Article 163297"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High cross-plane thermal conductivity in graphene films achieved via controlled thermal reduction of graphene oxide and embedding of multi-walled carbon nanotubes\",\"authors\":\"Xun Li ,&nbsp;Tianhao Zhang ,&nbsp;Ruxuan Zhang ,&nbsp;Jing Liu ,&nbsp;Tian Tian ,&nbsp;Hexiang Han ,&nbsp;Kangli Cao ,&nbsp;Yanjie Su\",\"doi\":\"10.1016/j.apsusc.2025.163297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The thermal conductivity graphene films using graphene oxide (GO) as the raw material experience an expansion in interlamellar spacing and weaker compactness attributed to the decomposition of oxygen-containing functional groups during thermal reduction. The process indirectly influences the cross-plane thermal conductivity (<em>K</em><sub>⊥</sub>), resulting in limitations for the potential applications. In this work, a graphene film with high <em>K</em><sub>⊥</sub> value<!--> <!-->is achieved by integration of<!--> <!-->controlled thermal reduction of GO film and the strategic embedding multi-walled carbon nanotubes (MWCNTs) into graphene layers. The results demonstrate that a moderate thermal reduction rate (3 °C min<sup>−1</sup>) helps to avoid excessive morphological evolution in GO. Simultaneously, the uniformly embedded MWCNTs network acts as bridging structures, which can effectively repair the point defects in graphene and significantly reduce the interlamellar interfacial thermal resistance. After optimization of the thermal reduction process and the MWCNTs loading, the <em>K</em><sub>⊥</sub> value of the MWCNT-graphene film at room temperature is 23.28 W m<sup>−1</sup> K<sup>−1</sup>, which is 4.82 times higher than that of pristine graphene. This work deepens the understanding of the GO thermal reduction process and offers valuable guidance for the design of advanced graphene composite films with superior cross-plane thermal management capabilities.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"702 \",\"pages\":\"Article 163297\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225010116\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225010116","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以氧化石墨烯(GO)为原料制备的导热石墨烯薄膜在热还原过程中,由于含氧官能团的分解,导致层间间距扩大,致密性变弱。该过程间接影响了平面间导热系数(K⊥),从而限制了潜在的应用。在这项工作中,通过将GO膜的可控热还原和将多壁碳纳米管(MWCNTs)战略性地嵌入石墨烯层,实现了具有高K⊥的石墨烯膜。结果表明,适度的热还原速率(3°C min - 1)有助于避免氧化石墨烯的过度形态演化。同时,均匀嵌入的MWCNTs网络作为桥接结构,可以有效修复石墨烯中的点缺陷,显著降低层间界面热阻。优化热还原工艺和MWCNTs负载后,MWCNTs -石墨烯薄膜在室温下的⊥值为23.28 W m−1 K−1,是原始石墨烯的4.82倍。这项工作加深了对氧化石墨烯热还原过程的理解,并为具有优越的跨平面热管理能力的先进石墨烯复合薄膜的设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High cross-plane thermal conductivity in graphene films achieved via controlled thermal reduction of graphene oxide and embedding of multi-walled carbon nanotubes

High cross-plane thermal conductivity in graphene films achieved via controlled thermal reduction of graphene oxide and embedding of multi-walled carbon nanotubes
The thermal conductivity graphene films using graphene oxide (GO) as the raw material experience an expansion in interlamellar spacing and weaker compactness attributed to the decomposition of oxygen-containing functional groups during thermal reduction. The process indirectly influences the cross-plane thermal conductivity (K), resulting in limitations for the potential applications. In this work, a graphene film with high K value is achieved by integration of controlled thermal reduction of GO film and the strategic embedding multi-walled carbon nanotubes (MWCNTs) into graphene layers. The results demonstrate that a moderate thermal reduction rate (3 °C min−1) helps to avoid excessive morphological evolution in GO. Simultaneously, the uniformly embedded MWCNTs network acts as bridging structures, which can effectively repair the point defects in graphene and significantly reduce the interlamellar interfacial thermal resistance. After optimization of the thermal reduction process and the MWCNTs loading, the K value of the MWCNT-graphene film at room temperature is 23.28 W m−1 K−1, which is 4.82 times higher than that of pristine graphene. This work deepens the understanding of the GO thermal reduction process and offers valuable guidance for the design of advanced graphene composite films with superior cross-plane thermal management capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信