基于时空维数去噪和联合VMD分解的Informer-BiGRU-temporal attention多步风速预测模型

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Zhengze Fu , Hongliang Qian , Wei Wei , Xuanxuan Chu , Fan Yang , Chengchao Guo , Fuming Wang
{"title":"基于时空维数去噪和联合VMD分解的Informer-BiGRU-temporal attention多步风速预测模型","authors":"Zhengze Fu ,&nbsp;Hongliang Qian ,&nbsp;Wei Wei ,&nbsp;Xuanxuan Chu ,&nbsp;Fan Yang ,&nbsp;Chengchao Guo ,&nbsp;Fuming Wang","doi":"10.1016/j.energy.2025.136265","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate wind speed prediction is crucial for optimizing renewable energy utilization and enhancing operational safety in wind farms. However, existing methods face challenges due to data noise, mode mixing in decomposition, and limited model adaptability for multi-step forecasting. This paper proposes a novel hybrid framework (HPMTC-CVMD-IBTA) integrating three innovations: (1) A spatial-temporal denoising method (HPMTC) combining high-order polynomial fitting with M-estimator correction and temporal clustering to preserve signal integrity while removing noise; (2) A decomposition-optimization approach (CVMD) that adaptively weights variational mode decomposition (VMD) components via convolutional neural networks, reducing reconstruction errors compared to traditional methods; and (3) An Informer-BiGRU-Temporal Attention (IBTA) model that leverages multi-variable dependencies and long-sequence patterns through bidirectional gated units and attention mechanisms. Experiments on real-world wind farm datasets (Guangdong and Gansu, China) demonstrate the framework's superiority: It achieves over 99 % prediction accuracy (R<sup>2</sup>), reduces MAE by 15–40 % against benchmarks (e.g., LSTM, BiGRU), and improves multi-step forecasting robustness across seasons. The proposed system addresses critical limitations in noise sensitivity, decomposition instability, and temporal feature decay, offering a reliable solution for energy management and disaster prevention.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"326 ","pages":"Article 136265"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Informer-BiGRU-temporal attention multi-step wind speed prediction model based on spatial-temporal dimension denoising and combined VMD decomposition\",\"authors\":\"Zhengze Fu ,&nbsp;Hongliang Qian ,&nbsp;Wei Wei ,&nbsp;Xuanxuan Chu ,&nbsp;Fan Yang ,&nbsp;Chengchao Guo ,&nbsp;Fuming Wang\",\"doi\":\"10.1016/j.energy.2025.136265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate wind speed prediction is crucial for optimizing renewable energy utilization and enhancing operational safety in wind farms. However, existing methods face challenges due to data noise, mode mixing in decomposition, and limited model adaptability for multi-step forecasting. This paper proposes a novel hybrid framework (HPMTC-CVMD-IBTA) integrating three innovations: (1) A spatial-temporal denoising method (HPMTC) combining high-order polynomial fitting with M-estimator correction and temporal clustering to preserve signal integrity while removing noise; (2) A decomposition-optimization approach (CVMD) that adaptively weights variational mode decomposition (VMD) components via convolutional neural networks, reducing reconstruction errors compared to traditional methods; and (3) An Informer-BiGRU-Temporal Attention (IBTA) model that leverages multi-variable dependencies and long-sequence patterns through bidirectional gated units and attention mechanisms. Experiments on real-world wind farm datasets (Guangdong and Gansu, China) demonstrate the framework's superiority: It achieves over 99 % prediction accuracy (R<sup>2</sup>), reduces MAE by 15–40 % against benchmarks (e.g., LSTM, BiGRU), and improves multi-step forecasting robustness across seasons. The proposed system addresses critical limitations in noise sensitivity, decomposition instability, and temporal feature decay, offering a reliable solution for energy management and disaster prevention.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"326 \",\"pages\":\"Article 136265\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225019073\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225019073","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确的风速预测对于优化可再生能源利用和提高风电场的运行安全性至关重要。但是,现有方法存在数据噪声、分解过程中的模式混合、模型对多步预测的适应性有限等问题。本文提出了一种新的混合框架(HPMTC- cvmd - ibta),该框架集成了以下三个创新:(1)将高阶多项式拟合与m估计量校正和时间聚类相结合的时空去噪方法(HPMTC)在去除噪声的同时保持信号完整性;(2)采用卷积神经网络自适应加权变分模态分解(VMD)分量的分解优化方法(CVMD),与传统方法相比,减少了重构误差;(3)通过双向门控单元和注意机制,利用多变量依赖关系和长序列模式的信息者- bigru -时间注意(IBTA)模型。在真实风电场数据集(中国广东和甘肃)上的实验证明了该框架的优势:它实现了超过99%的预测精度(R2),与基准(例如LSTM, BiGRU)相比,MAE降低了15 - 40%,并提高了跨季节的多步预测稳稳性。该系统解决了噪声敏感性、分解不稳定性和时间特征衰减的关键限制,为能源管理和灾害预防提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Informer-BiGRU-temporal attention multi-step wind speed prediction model based on spatial-temporal dimension denoising and combined VMD decomposition
Accurate wind speed prediction is crucial for optimizing renewable energy utilization and enhancing operational safety in wind farms. However, existing methods face challenges due to data noise, mode mixing in decomposition, and limited model adaptability for multi-step forecasting. This paper proposes a novel hybrid framework (HPMTC-CVMD-IBTA) integrating three innovations: (1) A spatial-temporal denoising method (HPMTC) combining high-order polynomial fitting with M-estimator correction and temporal clustering to preserve signal integrity while removing noise; (2) A decomposition-optimization approach (CVMD) that adaptively weights variational mode decomposition (VMD) components via convolutional neural networks, reducing reconstruction errors compared to traditional methods; and (3) An Informer-BiGRU-Temporal Attention (IBTA) model that leverages multi-variable dependencies and long-sequence patterns through bidirectional gated units and attention mechanisms. Experiments on real-world wind farm datasets (Guangdong and Gansu, China) demonstrate the framework's superiority: It achieves over 99 % prediction accuracy (R2), reduces MAE by 15–40 % against benchmarks (e.g., LSTM, BiGRU), and improves multi-step forecasting robustness across seasons. The proposed system addresses critical limitations in noise sensitivity, decomposition instability, and temporal feature decay, offering a reliable solution for energy management and disaster prevention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信