纳米氧化钨功能化多孔硅传感器的谐振频率和电流响应研究

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rasha B. Rashid , Murad Shahadha Mahmood , Alwan M. Alwan
{"title":"纳米氧化钨功能化多孔硅传感器的谐振频率和电流响应研究","authors":"Rasha B. Rashid ,&nbsp;Murad Shahadha Mahmood ,&nbsp;Alwan M. Alwan","doi":"10.1016/j.mseb.2025.118314","DOIUrl":null,"url":null,"abstract":"<div><div>In this investigation, a capacitive sensor based on tungsten oxide nanoparticles (WO<sub>3</sub>_Nps) and porous silicon (Psi) hybrid structures were synthesised and extensively examined for the detection of low concentrations of NO<sub>2</sub> gas molecules. The integration of WO<sub>3</sub>_Nps onto the pre-prepared Psi layers was accomplished through a cost-effective and straightforward room-temperature dipping methodology. The as-prepared Psi layers were fabricated utilising a laser-assisted electrochemical etching technique (L-AEE) at room temperature, with parameters set to 10 mW/cm<sup>2</sup> laser power, 35 mA/cm<sup>2</sup> current density, and a duration of 9 min. The frequency <span><math><mrow><mi>response</mi><msub><mi>S</mi><mi>f</mi></msub></mrow></math></span> and current response <span><math><mrow><msub><mi>S</mi><mi>I</mi></msub></mrow></math></span> of the WO<sub>3_</sub>Nps/Psi hybrid structures in the RLC sensing circuit were examined at various concentrations of gas concentration. Enhanced sensitivity with a minimum DL of 51.5 % at 0.001 ppm was attained for frequency responses compared to 37.3 % and 0.02 ppm acquired through current responses.</div><div>Furthermore, the reducing rate in the sensitivity for <span><math><mrow><msub><mi>S</mi><mi>f</mi></msub></mrow></math></span> was ∼ 0.022 % day<sup>−1,</sup> which is one order of magnitude lower than that of <span><math><mrow><msub><mi>S</mi><mi>I</mi></msub></mrow></math></span> which was ∼ 0.12 % day<sup>−1</sup>. This variation in responses is strongly interrelated to the capacitance of the capacitance of the sensor. The evaluation of gas sensor performance in terms of <span><math><mrow><msub><mi>S</mi><mi>f</mi></msub></mrow></math></span> in RLC sensing circuit represents a novel approach for the detection of lower gas concentrations.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118314"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of the resonance frequency and current response of porous silicon sensors functionalised with tungsten oxide nanoparticles\",\"authors\":\"Rasha B. Rashid ,&nbsp;Murad Shahadha Mahmood ,&nbsp;Alwan M. Alwan\",\"doi\":\"10.1016/j.mseb.2025.118314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this investigation, a capacitive sensor based on tungsten oxide nanoparticles (WO<sub>3</sub>_Nps) and porous silicon (Psi) hybrid structures were synthesised and extensively examined for the detection of low concentrations of NO<sub>2</sub> gas molecules. The integration of WO<sub>3</sub>_Nps onto the pre-prepared Psi layers was accomplished through a cost-effective and straightforward room-temperature dipping methodology. The as-prepared Psi layers were fabricated utilising a laser-assisted electrochemical etching technique (L-AEE) at room temperature, with parameters set to 10 mW/cm<sup>2</sup> laser power, 35 mA/cm<sup>2</sup> current density, and a duration of 9 min. The frequency <span><math><mrow><mi>response</mi><msub><mi>S</mi><mi>f</mi></msub></mrow></math></span> and current response <span><math><mrow><msub><mi>S</mi><mi>I</mi></msub></mrow></math></span> of the WO<sub>3_</sub>Nps/Psi hybrid structures in the RLC sensing circuit were examined at various concentrations of gas concentration. Enhanced sensitivity with a minimum DL of 51.5 % at 0.001 ppm was attained for frequency responses compared to 37.3 % and 0.02 ppm acquired through current responses.</div><div>Furthermore, the reducing rate in the sensitivity for <span><math><mrow><msub><mi>S</mi><mi>f</mi></msub></mrow></math></span> was ∼ 0.022 % day<sup>−1,</sup> which is one order of magnitude lower than that of <span><math><mrow><msub><mi>S</mi><mi>I</mi></msub></mrow></math></span> which was ∼ 0.12 % day<sup>−1</sup>. This variation in responses is strongly interrelated to the capacitance of the capacitance of the sensor. The evaluation of gas sensor performance in terms of <span><math><mrow><msub><mi>S</mi><mi>f</mi></msub></mrow></math></span> in RLC sensing circuit represents a novel approach for the detection of lower gas concentrations.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"319 \",\"pages\":\"Article 118314\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092151072500337X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072500337X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,合成了一种基于氧化钨纳米颗粒(WO3_Nps)和多孔硅(Psi)杂化结构的电容式传感器,并对其进行了广泛的测试,用于检测低浓度的NO2气体分子。将WO3_Nps集成到预制备的Psi层上是通过一种成本效益高且简单的室温浸镀方法完成的。利用激光辅助电化学刻蚀技术(L-AEE)在室温下制备了制备好的Psi层,激光功率设置为10 mW/cm2,电流密度为35 mA/cm2,持续时间为9 min。在不同浓度的气体浓度下,测试了RLC传感电路中WO3_Nps/Psi混合结构的频率响应sesf和电流响应SI。与通过电流响应获得的37.3%和0.02 ppm相比,频率响应的灵敏度提高了,在0.001 ppm时最低DL为51.5%。此外,Sf敏感性的降低率为~ 0.022% day - 1,比SI敏感性的降低率(~ 0.12% day - 1)低一个数量级。这种响应的变化与传感器的电容的电容密切相关。在RLC传感电路中,用Sf来评价气体传感器的性能代表了一种检测低浓度气体的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation of the resonance frequency and current response of porous silicon sensors functionalised with tungsten oxide nanoparticles
In this investigation, a capacitive sensor based on tungsten oxide nanoparticles (WO3_Nps) and porous silicon (Psi) hybrid structures were synthesised and extensively examined for the detection of low concentrations of NO2 gas molecules. The integration of WO3_Nps onto the pre-prepared Psi layers was accomplished through a cost-effective and straightforward room-temperature dipping methodology. The as-prepared Psi layers were fabricated utilising a laser-assisted electrochemical etching technique (L-AEE) at room temperature, with parameters set to 10 mW/cm2 laser power, 35 mA/cm2 current density, and a duration of 9 min. The frequency responseSf and current response SI of the WO3_Nps/Psi hybrid structures in the RLC sensing circuit were examined at various concentrations of gas concentration. Enhanced sensitivity with a minimum DL of 51.5 % at 0.001 ppm was attained for frequency responses compared to 37.3 % and 0.02 ppm acquired through current responses.
Furthermore, the reducing rate in the sensitivity for Sf was ∼ 0.022 % day−1, which is one order of magnitude lower than that of SI which was ∼ 0.12 % day−1. This variation in responses is strongly interrelated to the capacitance of the capacitance of the sensor. The evaluation of gas sensor performance in terms of Sf in RLC sensing circuit represents a novel approach for the detection of lower gas concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信