{"title":"超轻暗物质和高频引力波在空腔和电路中的同步共振和宽带探测。","authors":"Yifan Chen,Chunlong Li,Yuxin Liu,Jing Shu,Yuting Yang,Yanjie Zeng","doi":"10.1088/1361-6633/add050","DOIUrl":null,"url":null,"abstract":"Electromagnetic resonant systems, such as cavities and LC circuits, are widely used to detect ultralight boson dark matter and high-frequency gravitational waves. However, the narrow bandwidth of single-mode resonators necessitates multiple scan steps to cover broad frequency ranges. By incorporating a network of auxiliary modes via beam-splitter-type and non-degenerate parametric couplings, we enable broadband detection with an effective bandwidth of each scan matching the order of the resonant frequency, while maintaining a strong signal response. In heterodyne upconversion detection, where a background cavity mode transitions into another due to a potential background source, multiple orders of the source frequency can be probed with high sensitivity without tuning the cavity frequency. Consequently, our method allows for significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"35 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Resonant and Broadband Detection of Ultralight Dark Matter and High-Frequency Gravitational Waves via Cavities and Circuits.\",\"authors\":\"Yifan Chen,Chunlong Li,Yuxin Liu,Jing Shu,Yuting Yang,Yanjie Zeng\",\"doi\":\"10.1088/1361-6633/add050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic resonant systems, such as cavities and LC circuits, are widely used to detect ultralight boson dark matter and high-frequency gravitational waves. However, the narrow bandwidth of single-mode resonators necessitates multiple scan steps to cover broad frequency ranges. By incorporating a network of auxiliary modes via beam-splitter-type and non-degenerate parametric couplings, we enable broadband detection with an effective bandwidth of each scan matching the order of the resonant frequency, while maintaining a strong signal response. In heterodyne upconversion detection, where a background cavity mode transitions into another due to a potential background source, multiple orders of the source frequency can be probed with high sensitivity without tuning the cavity frequency. Consequently, our method allows for significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/add050\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/add050","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Simultaneous Resonant and Broadband Detection of Ultralight Dark Matter and High-Frequency Gravitational Waves via Cavities and Circuits.
Electromagnetic resonant systems, such as cavities and LC circuits, are widely used to detect ultralight boson dark matter and high-frequency gravitational waves. However, the narrow bandwidth of single-mode resonators necessitates multiple scan steps to cover broad frequency ranges. By incorporating a network of auxiliary modes via beam-splitter-type and non-degenerate parametric couplings, we enable broadband detection with an effective bandwidth of each scan matching the order of the resonant frequency, while maintaining a strong signal response. In heterodyne upconversion detection, where a background cavity mode transitions into another due to a potential background source, multiple orders of the source frequency can be probed with high sensitivity without tuning the cavity frequency. Consequently, our method allows for significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.
期刊介绍:
Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.