Ruo-Jue Zou, Long Deng, Si-Min Xue, Feng-Fei Cai, Ling-Hui Tong, Yang Zhang, Yuan Tian, Li Zhang, Lijie Zhang, Zhihui Qin, Long-Jing Yin
{"title":"微尖端操纵折纸的坚固扭曲少层石墨烯","authors":"Ruo-Jue Zou, Long Deng, Si-Min Xue, Feng-Fei Cai, Ling-Hui Tong, Yang Zhang, Yuan Tian, Li Zhang, Lijie Zhang, Zhihui Qin, Long-Jing Yin","doi":"10.1063/5.0265918","DOIUrl":null,"url":null,"abstract":"Twisted few-layer graphene (tFLG) has emerged as an ideal model system for investigating novel strongly correlated and topological phenomena. However, the experimental construction of tFLG with high structural stability is still challenging. Here, we introduce a highly accessible method for fabricating robust tFLG by polymer micro-tip manipulated origami. Through using a self-prepared polymer micro-tip—which is composed of multiple dimethylpolysiloxane, poly(vinyl chloride), and graphite sheets—to fold graphene layers, we fabricated tFLG with different twist angles (0°–30°) and various layers, including twisted bilayers (1 + 1), twisted double-bilayers (2 + 2), twisted double-trilayers (3 + 3), and thicker layers. Even ABC-stacked tFLG were created, such as twisted ABC/ABC and ABC/ABA graphene coexisting in an ABC-ABA domain wall region. We found that the origami-fabricated tFLG exhibits high stability against thermal and mechanical perturbations including heating and transferring, which could be attributed to its special folding and tearing structures. Moreover, based on the rich types of samples, we revealed twist-angle- and stacking-order-dependent Raman characteristics of tFLG, which are valuable for understanding stacking-modulated phonon spectroscopy. Our experiments provide a simple and efficient approach to construct structurally robust tFLG, paving the way for the study of highly stable twisted van der Waals heterostructures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"44 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-tip manipulated origami for robust twisted few-layer graphene\",\"authors\":\"Ruo-Jue Zou, Long Deng, Si-Min Xue, Feng-Fei Cai, Ling-Hui Tong, Yang Zhang, Yuan Tian, Li Zhang, Lijie Zhang, Zhihui Qin, Long-Jing Yin\",\"doi\":\"10.1063/5.0265918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twisted few-layer graphene (tFLG) has emerged as an ideal model system for investigating novel strongly correlated and topological phenomena. However, the experimental construction of tFLG with high structural stability is still challenging. Here, we introduce a highly accessible method for fabricating robust tFLG by polymer micro-tip manipulated origami. Through using a self-prepared polymer micro-tip—which is composed of multiple dimethylpolysiloxane, poly(vinyl chloride), and graphite sheets—to fold graphene layers, we fabricated tFLG with different twist angles (0°–30°) and various layers, including twisted bilayers (1 + 1), twisted double-bilayers (2 + 2), twisted double-trilayers (3 + 3), and thicker layers. Even ABC-stacked tFLG were created, such as twisted ABC/ABC and ABC/ABA graphene coexisting in an ABC-ABA domain wall region. We found that the origami-fabricated tFLG exhibits high stability against thermal and mechanical perturbations including heating and transferring, which could be attributed to its special folding and tearing structures. Moreover, based on the rich types of samples, we revealed twist-angle- and stacking-order-dependent Raman characteristics of tFLG, which are valuable for understanding stacking-modulated phonon spectroscopy. Our experiments provide a simple and efficient approach to construct structurally robust tFLG, paving the way for the study of highly stable twisted van der Waals heterostructures.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0265918\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0265918","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Micro-tip manipulated origami for robust twisted few-layer graphene
Twisted few-layer graphene (tFLG) has emerged as an ideal model system for investigating novel strongly correlated and topological phenomena. However, the experimental construction of tFLG with high structural stability is still challenging. Here, we introduce a highly accessible method for fabricating robust tFLG by polymer micro-tip manipulated origami. Through using a self-prepared polymer micro-tip—which is composed of multiple dimethylpolysiloxane, poly(vinyl chloride), and graphite sheets—to fold graphene layers, we fabricated tFLG with different twist angles (0°–30°) and various layers, including twisted bilayers (1 + 1), twisted double-bilayers (2 + 2), twisted double-trilayers (3 + 3), and thicker layers. Even ABC-stacked tFLG were created, such as twisted ABC/ABC and ABC/ABA graphene coexisting in an ABC-ABA domain wall region. We found that the origami-fabricated tFLG exhibits high stability against thermal and mechanical perturbations including heating and transferring, which could be attributed to its special folding and tearing structures. Moreover, based on the rich types of samples, we revealed twist-angle- and stacking-order-dependent Raman characteristics of tFLG, which are valuable for understanding stacking-modulated phonon spectroscopy. Our experiments provide a simple and efficient approach to construct structurally robust tFLG, paving the way for the study of highly stable twisted van der Waals heterostructures.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.