Daria Aristova, Dominik Kylies, Mario Del Rosario, Hannah S. Heil, Maria Schwerk, Malte Kuehl, Milagros N. Wong, Ricardo Henriques, Victor G. Puelles
{"title":"生物系统的纳米级成像通过扩展和超分辨率显微镜","authors":"Daria Aristova, Dominik Kylies, Mario Del Rosario, Hannah S. Heil, Maria Schwerk, Malte Kuehl, Milagros N. Wong, Ricardo Henriques, Victor G. Puelles","doi":"10.1063/5.0240464","DOIUrl":null,"url":null,"abstract":"Super-resolution microscopy (SRM) has revolutionized life sciences by overcoming the diffraction limit, enabling the visualization of biological structures at the nanoscale. Expansion Microscopy (ExM) has emerged as a powerful and accessible technique that enhances resolution by physically enlarging the specimen. Importantly, the principles of ExM provide a unique foundation for combinations with SRM methods, pushing the boundaries of achievable resolution. This review explores the fundamental principles of ExM and examines its successful integration with various SRM techniques, including fluorescence fluctuation-based SRM, structured illumination microscopy, stimulated emission depletion microscopy, and single-molecule localization microscopy. We discuss the applications, strengths, limitations, and resolutions achieved by these combined approaches, providing a comprehensive guide for researchers to select the most suitable method for their specific scientific needs. Key considerations when combining ExM with SRM include the impact on fluorophores, the requirement for specialized buffers, and the challenges posed by the sensitivity of expanded hydrogels to temperature and hydration. Strategies to address these challenges, such as optimized labeling techniques and gel re-embedding, are discussed in detail. This review aims to assist researchers in navigating the rapidly evolving landscape of ExM and SRM, facilitating the development of tailored imaging pipelines to advance our understanding of biological systems at the nanoscale.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"16 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale imaging of biological systems via expansion and super-resolution microscopy\",\"authors\":\"Daria Aristova, Dominik Kylies, Mario Del Rosario, Hannah S. Heil, Maria Schwerk, Malte Kuehl, Milagros N. Wong, Ricardo Henriques, Victor G. Puelles\",\"doi\":\"10.1063/5.0240464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-resolution microscopy (SRM) has revolutionized life sciences by overcoming the diffraction limit, enabling the visualization of biological structures at the nanoscale. Expansion Microscopy (ExM) has emerged as a powerful and accessible technique that enhances resolution by physically enlarging the specimen. Importantly, the principles of ExM provide a unique foundation for combinations with SRM methods, pushing the boundaries of achievable resolution. This review explores the fundamental principles of ExM and examines its successful integration with various SRM techniques, including fluorescence fluctuation-based SRM, structured illumination microscopy, stimulated emission depletion microscopy, and single-molecule localization microscopy. We discuss the applications, strengths, limitations, and resolutions achieved by these combined approaches, providing a comprehensive guide for researchers to select the most suitable method for their specific scientific needs. Key considerations when combining ExM with SRM include the impact on fluorophores, the requirement for specialized buffers, and the challenges posed by the sensitivity of expanded hydrogels to temperature and hydration. Strategies to address these challenges, such as optimized labeling techniques and gel re-embedding, are discussed in detail. This review aims to assist researchers in navigating the rapidly evolving landscape of ExM and SRM, facilitating the development of tailored imaging pipelines to advance our understanding of biological systems at the nanoscale.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0240464\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0240464","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Nanoscale imaging of biological systems via expansion and super-resolution microscopy
Super-resolution microscopy (SRM) has revolutionized life sciences by overcoming the diffraction limit, enabling the visualization of biological structures at the nanoscale. Expansion Microscopy (ExM) has emerged as a powerful and accessible technique that enhances resolution by physically enlarging the specimen. Importantly, the principles of ExM provide a unique foundation for combinations with SRM methods, pushing the boundaries of achievable resolution. This review explores the fundamental principles of ExM and examines its successful integration with various SRM techniques, including fluorescence fluctuation-based SRM, structured illumination microscopy, stimulated emission depletion microscopy, and single-molecule localization microscopy. We discuss the applications, strengths, limitations, and resolutions achieved by these combined approaches, providing a comprehensive guide for researchers to select the most suitable method for their specific scientific needs. Key considerations when combining ExM with SRM include the impact on fluorophores, the requirement for specialized buffers, and the challenges posed by the sensitivity of expanded hydrogels to temperature and hydration. Strategies to address these challenges, such as optimized labeling techniques and gel re-embedding, are discussed in detail. This review aims to assist researchers in navigating the rapidly evolving landscape of ExM and SRM, facilitating the development of tailored imaging pipelines to advance our understanding of biological systems at the nanoscale.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.