Yaorong Xiahou, Bo Wang, He Li, Zhijie Shen, Yejing Jiang, Huizi Li, Sarp Kerman, Fan Wu, Yanyan Fu, Teng Wang, Jiangong Cheng, Chang Chen
{"title":"用于高灵敏度多气体检测的片上阵列荧光传感器","authors":"Yaorong Xiahou, Bo Wang, He Li, Zhijie Shen, Yejing Jiang, Huizi Li, Sarp Kerman, Fan Wu, Yanyan Fu, Teng Wang, Jiangong Cheng, Chang Chen","doi":"10.1021/acssensors.5c00460","DOIUrl":null,"url":null,"abstract":"Fluorescence array sensors provide an effective strategy to mitigate the cross-reactivity of single fluorescence materials by exploiting their high dimensionality and exceptional sensitivity. However, conventional fluorescent sensing arrays are often hindered by complex and bulky designs, resulting in low cost-effectiveness and severely restricting their potential for integration into compact sensing devices. Benefiting from its high integration advantage, photonic integration technology offers a promising solution for developing low-cost and miniaturized fluorescent gas sensor arrays. In this article, we present a novel fluorescence array sensor based on a silicon nitride photonic integration platform. This innovative device enables lab-on-chip functionality by integrating a microfluidic channel for efficient gas detection in a few square centimeters. The sensor demonstrates exceptional performance, accurately identifying six types of volatile organic compounds and achieving a remarkably low detection limit of 2.8 ppb for <i>N</i>-methylphenethylamine (MPEA). Notably, it exhibits high precision in detecting MPEA even within complex, high-concentration perfume mixtures. Moreover, this technology enables the expansion of the fluorescence array without increasing the sensor’s volume, offering a practical solution for integrated fluorescence sensor array detection.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"17 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Chip Array Fluorescent Sensor for High-Sensitivity Multi-Gas Detection\",\"authors\":\"Yaorong Xiahou, Bo Wang, He Li, Zhijie Shen, Yejing Jiang, Huizi Li, Sarp Kerman, Fan Wu, Yanyan Fu, Teng Wang, Jiangong Cheng, Chang Chen\",\"doi\":\"10.1021/acssensors.5c00460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence array sensors provide an effective strategy to mitigate the cross-reactivity of single fluorescence materials by exploiting their high dimensionality and exceptional sensitivity. However, conventional fluorescent sensing arrays are often hindered by complex and bulky designs, resulting in low cost-effectiveness and severely restricting their potential for integration into compact sensing devices. Benefiting from its high integration advantage, photonic integration technology offers a promising solution for developing low-cost and miniaturized fluorescent gas sensor arrays. In this article, we present a novel fluorescence array sensor based on a silicon nitride photonic integration platform. This innovative device enables lab-on-chip functionality by integrating a microfluidic channel for efficient gas detection in a few square centimeters. The sensor demonstrates exceptional performance, accurately identifying six types of volatile organic compounds and achieving a remarkably low detection limit of 2.8 ppb for <i>N</i>-methylphenethylamine (MPEA). Notably, it exhibits high precision in detecting MPEA even within complex, high-concentration perfume mixtures. Moreover, this technology enables the expansion of the fluorescence array without increasing the sensor’s volume, offering a practical solution for integrated fluorescence sensor array detection.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c00460\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00460","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
On-Chip Array Fluorescent Sensor for High-Sensitivity Multi-Gas Detection
Fluorescence array sensors provide an effective strategy to mitigate the cross-reactivity of single fluorescence materials by exploiting their high dimensionality and exceptional sensitivity. However, conventional fluorescent sensing arrays are often hindered by complex and bulky designs, resulting in low cost-effectiveness and severely restricting their potential for integration into compact sensing devices. Benefiting from its high integration advantage, photonic integration technology offers a promising solution for developing low-cost and miniaturized fluorescent gas sensor arrays. In this article, we present a novel fluorescence array sensor based on a silicon nitride photonic integration platform. This innovative device enables lab-on-chip functionality by integrating a microfluidic channel for efficient gas detection in a few square centimeters. The sensor demonstrates exceptional performance, accurately identifying six types of volatile organic compounds and achieving a remarkably low detection limit of 2.8 ppb for N-methylphenethylamine (MPEA). Notably, it exhibits high precision in detecting MPEA even within complex, high-concentration perfume mixtures. Moreover, this technology enables the expansion of the fluorescence array without increasing the sensor’s volume, offering a practical solution for integrated fluorescence sensor array detection.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.