使用二苯碘氯化铵和N -乙烯基吡咯烷酮的生物照相技术可以实现空间编码生物物质的快速高分辨率体积3D打印

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexis Wolfel, Castro Johnbosco, Annalise Anspach, Marieke Meteling, Jos Olijve, Niklas Felix König, Jeroen Leijten
{"title":"使用二苯碘氯化铵和N -乙烯基吡咯烷酮的生物照相技术可以实现空间编码生物物质的快速高分辨率体积3D打印","authors":"Alexis Wolfel, Castro Johnbosco, Annalise Anspach, Marieke Meteling, Jos Olijve, Niklas Felix König, Jeroen Leijten","doi":"10.1002/adma.202501052","DOIUrl":null,"url":null,"abstract":"Light‐based volumetric bioprinting enables fabrication of cubic centimeter‐sized living materials with micrometer resolution in minutes. Xolography is a light sheet‐based volumetric printing technology that offers unprecedented volumetric generation rates and print resolutions for hard plastics. However, the limited solubility and reactivity of current dual‐color photoinitiators (DCPIs) in aqueous media have hindered their application for high‐resolution bioprinting of living matter. Here, we present a novel three‐component formulation that drastically improves photoreactivity and thereby enables high‐resolution, rapid, and cytocompatible Xolographic biofabrication of intricately architected yet mechanically robust living materials. To achieve this, various relevant additives are systematically explored, which revealed that diphenyliodonium chloride and <jats:italic>N</jats:italic>‐vinylpyrrolidone strongly enhance D‐mediated photoreactivity, as confirmed by dual‐color photo‐rheology. This enables Xolographic bioprinting of gelatin methacryloyl‐based bioresins, producing &gt;1 cm<jats:sup>3</jats:sup> constructs at ≈20 µm positive and 125 µm negative resolution within minutes. Multimaterial printing, molecular patterning, and grayscale‐mediated mechanical patterning are explored to programmably create intricate, biomimetic, and concentration‐controlled architectures. We demonstrate the Bioxolographic printing of various cell types, showing excellent cell viability, compatibility with long‐term culture, and ability for nascent protein deposition. These results position Bioxolography as a transformative platform for rapid, scalable, high‐resolution fabrication of functional living materials with encoded chemical and mechanical properties.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"17 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioxolography Using Diphenyliodonium Chloride and N‐Vinylpyrrolidone Enables Rapid High‐Resolution Volumetric 3D Printing of Spatially Encoded Living Matter\",\"authors\":\"Alexis Wolfel, Castro Johnbosco, Annalise Anspach, Marieke Meteling, Jos Olijve, Niklas Felix König, Jeroen Leijten\",\"doi\":\"10.1002/adma.202501052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light‐based volumetric bioprinting enables fabrication of cubic centimeter‐sized living materials with micrometer resolution in minutes. Xolography is a light sheet‐based volumetric printing technology that offers unprecedented volumetric generation rates and print resolutions for hard plastics. However, the limited solubility and reactivity of current dual‐color photoinitiators (DCPIs) in aqueous media have hindered their application for high‐resolution bioprinting of living matter. Here, we present a novel three‐component formulation that drastically improves photoreactivity and thereby enables high‐resolution, rapid, and cytocompatible Xolographic biofabrication of intricately architected yet mechanically robust living materials. To achieve this, various relevant additives are systematically explored, which revealed that diphenyliodonium chloride and <jats:italic>N</jats:italic>‐vinylpyrrolidone strongly enhance D‐mediated photoreactivity, as confirmed by dual‐color photo‐rheology. This enables Xolographic bioprinting of gelatin methacryloyl‐based bioresins, producing &gt;1 cm<jats:sup>3</jats:sup> constructs at ≈20 µm positive and 125 µm negative resolution within minutes. Multimaterial printing, molecular patterning, and grayscale‐mediated mechanical patterning are explored to programmably create intricate, biomimetic, and concentration‐controlled architectures. We demonstrate the Bioxolographic printing of various cell types, showing excellent cell viability, compatibility with long‐term culture, and ability for nascent protein deposition. These results position Bioxolography as a transformative platform for rapid, scalable, high‐resolution fabrication of functional living materials with encoded chemical and mechanical properties.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202501052\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于光的体积生物打印技术可以在几分钟内以微米级的分辨率制造立方厘米大小的生物材料。Xolography是一种基于薄片的体积打印技术,可为硬塑料提供前所未有的体积生成率和打印分辨率。然而,目前双色光引发剂(dcpi)在水介质中的溶解度和反应性有限,阻碍了它们在生物物质高分辨率生物打印中的应用。在这里,我们提出了一种新的三组分配方,它大大提高了光反应性,从而实现了高分辨率、快速和细胞相容性的Xolographic生物制造复杂结构但机械坚固的生物材料。为了实现这一目标,系统地探索了各种相关添加剂,发现二苯硫鎓氯和N -乙烯基吡咯烷酮可以增强D介导的光反应性,并通过双色光流变学证实了这一点。这使得明胶甲基丙烯基生物树脂的x光生物打印能够在几分钟内以≈20 μ m的正分辨率和125 μ m的负分辨率生产1 cm3的结构。探索多材料印刷,分子图案和灰度介导的机械图案,以可编程地创建复杂的,仿生的和浓度控制的架构。我们展示了各种细胞类型的生物印迹印刷,显示出良好的细胞活力,与长期培养的兼容性,以及新生蛋白质沉积的能力。这些结果将生物印迹技术定位为快速、可扩展、高分辨率制造具有编码化学和机械特性的功能性生物材料的变革性平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioxolography Using Diphenyliodonium Chloride and N‐Vinylpyrrolidone Enables Rapid High‐Resolution Volumetric 3D Printing of Spatially Encoded Living Matter
Light‐based volumetric bioprinting enables fabrication of cubic centimeter‐sized living materials with micrometer resolution in minutes. Xolography is a light sheet‐based volumetric printing technology that offers unprecedented volumetric generation rates and print resolutions for hard plastics. However, the limited solubility and reactivity of current dual‐color photoinitiators (DCPIs) in aqueous media have hindered their application for high‐resolution bioprinting of living matter. Here, we present a novel three‐component formulation that drastically improves photoreactivity and thereby enables high‐resolution, rapid, and cytocompatible Xolographic biofabrication of intricately architected yet mechanically robust living materials. To achieve this, various relevant additives are systematically explored, which revealed that diphenyliodonium chloride and N‐vinylpyrrolidone strongly enhance D‐mediated photoreactivity, as confirmed by dual‐color photo‐rheology. This enables Xolographic bioprinting of gelatin methacryloyl‐based bioresins, producing >1 cm3 constructs at ≈20 µm positive and 125 µm negative resolution within minutes. Multimaterial printing, molecular patterning, and grayscale‐mediated mechanical patterning are explored to programmably create intricate, biomimetic, and concentration‐controlled architectures. We demonstrate the Bioxolographic printing of various cell types, showing excellent cell viability, compatibility with long‐term culture, and ability for nascent protein deposition. These results position Bioxolography as a transformative platform for rapid, scalable, high‐resolution fabrication of functional living materials with encoded chemical and mechanical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信