Tianyang Hu, Xianghui Cao, Siqi Xu, Yang Li, Xingbo Zhao, James P. Vary
{"title":"由剪切应力产生的琴的重力形状因子D","authors":"Tianyang Hu, Xianghui Cao, Siqi Xu, Yang Li, Xingbo Zhao, James P. Vary","doi":"10.1103/physrevd.111.074031","DOIUrl":null,"url":null,"abstract":"Based on our recent analysis of the hadronic matrix element of the stress-energy tensor in covariant light-front dynamics, we extract the charmonium gravitational form factor D</a:mi>(</a:mo>Q</a:mi>2</a:mn></a:msup>)</a:mo></a:math> from shear stress <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>T</e:mi><e:mn>12</e:mn></e:msup></e:math>. This is in contrast to our recent work using the (light-front) energy density <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mi>T</g:mi><g:mrow><g:mo>+</g:mo><g:mo>−</g:mo></g:mrow></g:msup></g:math>. Indeed, by comparing these two currents, we identify terms that are responsible for the violation of the current conservation. Numerical results based on basis light-front quantization show that the violation effects are small, and the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>D</i:mi></i:math> term extracted from the two currents are close to each other, hence validating our previous work using <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msup><k:mi>T</k:mi><k:mrow><k:mo>+</k:mo><k:mo>−</k:mo></k:mrow></k:msup></k:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"44 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational form factor D of charmonium from shear stress\",\"authors\":\"Tianyang Hu, Xianghui Cao, Siqi Xu, Yang Li, Xingbo Zhao, James P. Vary\",\"doi\":\"10.1103/physrevd.111.074031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on our recent analysis of the hadronic matrix element of the stress-energy tensor in covariant light-front dynamics, we extract the charmonium gravitational form factor D</a:mi>(</a:mo>Q</a:mi>2</a:mn></a:msup>)</a:mo></a:math> from shear stress <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msup><e:mi>T</e:mi><e:mn>12</e:mn></e:msup></e:math>. This is in contrast to our recent work using the (light-front) energy density <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msup><g:mi>T</g:mi><g:mrow><g:mo>+</g:mo><g:mo>−</g:mo></g:mrow></g:msup></g:math>. Indeed, by comparing these two currents, we identify terms that are responsible for the violation of the current conservation. Numerical results based on basis light-front quantization show that the violation effects are small, and the <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>D</i:mi></i:math> term extracted from the two currents are close to each other, hence validating our previous work using <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:msup><k:mi>T</k:mi><k:mrow><k:mo>+</k:mo><k:mo>−</k:mo></k:mrow></k:msup></k:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.074031\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.074031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Gravitational form factor D of charmonium from shear stress
Based on our recent analysis of the hadronic matrix element of the stress-energy tensor in covariant light-front dynamics, we extract the charmonium gravitational form factor D(Q2) from shear stress T12. This is in contrast to our recent work using the (light-front) energy density T+−. Indeed, by comparing these two currents, we identify terms that are responsible for the violation of the current conservation. Numerical results based on basis light-front quantization show that the violation effects are small, and the D term extracted from the two currents are close to each other, hence validating our previous work using T+−. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.