{"title":"EvoWeaver:从共同进化信号大规模预测基因功能关联","authors":"Aidan H. Lakshman, Erik S. Wright","doi":"10.1038/s41467-025-59175-6","DOIUrl":null,"url":null,"abstract":"<p>The known universe of uncharacterized proteins is expanding far faster than our ability to annotate their functions through laboratory study. Computational annotation approaches rely on similarity to previously studied proteins, thereby ignoring unstudied proteins. Coevolutionary approaches hold promise for injecting new information into our knowledge of the protein universe by linking proteins through ‘guilt-by-association’. However, existing coevolutionary algorithms have insufficient accuracy and scalability to connect the entire universe of proteins. We present EvoWeaver, a method that weaves together 12 signals of coevolution to quantify the degree of shared evolution between genes. EvoWeaver accurately identifies proteins involved in protein complexes or separate steps of a biochemical pathway. We show the merits of EvoWeaver by partly reconstructing known biochemical pathways without any prior knowledge other than that available from genomic sequences. Applying EvoWeaver to 1545 gene groups from 8564 genomes reveals missing connections in popular databases and potentially undiscovered links between proteins.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EvoWeaver: large-scale prediction of gene functional associations from coevolutionary signals\",\"authors\":\"Aidan H. Lakshman, Erik S. Wright\",\"doi\":\"10.1038/s41467-025-59175-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The known universe of uncharacterized proteins is expanding far faster than our ability to annotate their functions through laboratory study. Computational annotation approaches rely on similarity to previously studied proteins, thereby ignoring unstudied proteins. Coevolutionary approaches hold promise for injecting new information into our knowledge of the protein universe by linking proteins through ‘guilt-by-association’. However, existing coevolutionary algorithms have insufficient accuracy and scalability to connect the entire universe of proteins. We present EvoWeaver, a method that weaves together 12 signals of coevolution to quantify the degree of shared evolution between genes. EvoWeaver accurately identifies proteins involved in protein complexes or separate steps of a biochemical pathway. We show the merits of EvoWeaver by partly reconstructing known biochemical pathways without any prior knowledge other than that available from genomic sequences. Applying EvoWeaver to 1545 gene groups from 8564 genomes reveals missing connections in popular databases and potentially undiscovered links between proteins.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59175-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59175-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
EvoWeaver: large-scale prediction of gene functional associations from coevolutionary signals
The known universe of uncharacterized proteins is expanding far faster than our ability to annotate their functions through laboratory study. Computational annotation approaches rely on similarity to previously studied proteins, thereby ignoring unstudied proteins. Coevolutionary approaches hold promise for injecting new information into our knowledge of the protein universe by linking proteins through ‘guilt-by-association’. However, existing coevolutionary algorithms have insufficient accuracy and scalability to connect the entire universe of proteins. We present EvoWeaver, a method that weaves together 12 signals of coevolution to quantify the degree of shared evolution between genes. EvoWeaver accurately identifies proteins involved in protein complexes or separate steps of a biochemical pathway. We show the merits of EvoWeaver by partly reconstructing known biochemical pathways without any prior knowledge other than that available from genomic sequences. Applying EvoWeaver to 1545 gene groups from 8564 genomes reveals missing connections in popular databases and potentially undiscovered links between proteins.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.