用机器学习预测MCI和阿尔茨海默病的结构脑完整性和其他特征的进展

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY
Marthe Mieling, Mushfa Yousuf, Nico Bunzeck
{"title":"用机器学习预测MCI和阿尔茨海默病的结构脑完整性和其他特征的进展","authors":"Marthe Mieling, Mushfa Yousuf, Nico Bunzeck","doi":"10.1007/s11357-025-01626-5","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer’s disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, <i>n</i> = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, <i>n</i> = 92; MCI-to-AD converters vs. MCI stable, <i>n</i> = 378). All classifications achieved 70–77% accuracy and 61–83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"67 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the progression of MCI and Alzheimer’s disease on structural brain integrity and other features with machine learning\",\"authors\":\"Marthe Mieling, Mushfa Yousuf, Nico Bunzeck\",\"doi\":\"10.1007/s11357-025-01626-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer’s disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, <i>n</i> = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, <i>n</i> = 92; MCI-to-AD converters vs. MCI stable, <i>n</i> = 378). All classifications achieved 70–77% accuracy and 61–83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.</p>\",\"PeriodicalId\":12730,\"journal\":{\"name\":\"GeroScience\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeroScience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11357-025-01626-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01626-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于结构MRI数据的机器学习(ML)显示出对阿尔茨海默病(AD)进展进行分类的巨大潜力,但大脑区域、人口统计学和蛋白质病变的具体贡献尚不清楚。使用阿尔茨海默病神经影像学计划(ADNI)数据,我们应用极端梯度增强算法和SHAP (SHapley Additive exPlanations)值对认知正常(CN)老年人、轻度认知障碍(MCI)老年人和AD痴呆患者进行分类。特征包括结构MRI、脑脊液状态、人口统计学和遗传数据。分析包括一个横断面多类分类(CN vs. MCI vs. AD痴呆,n = 568)和两个纵向二元分类(CN- MCI转换者vs. CN稳定者,n = 92;MCI- ad转换器vs. MCI稳定,n = 378)。所有分类准确率均达到70-77%,精密度为61-83%。关键特征是脑脊液状态、海马体积、内嗅厚度和杏仁核体积,具有明确的分离:海马特性有助于向MCI的转化,而内嗅皮层则表征了向AD痴呆的转化。研究结果强调了对AD进展的可解释的、特定轨迹的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the progression of MCI and Alzheimer’s disease on structural brain integrity and other features with machine learning

Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer’s disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, n = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, n = 92; MCI-to-AD converters vs. MCI stable, n = 378). All classifications achieved 70–77% accuracy and 61–83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信