Liang Wu, Xue Yao, Ze Luo, Lan Li, Haibo Huang, Hua Tang
{"title":"Bioinspired Nanoporous MOF-Modified Basalt Fiber Fabrics for Efficient and Multifunctional Oil–Water Separation","authors":"Liang Wu, Xue Yao, Ze Luo, Lan Li, Haibo Huang, Hua Tang","doi":"10.1021/acsami.5c00237","DOIUrl":null,"url":null,"abstract":"Oily wastewater pollution is increasing globally. Conventional treatment methods often fail due to inefficiency and secondary contamination. Therefore, developing advanced membrane separation technologies is crucial. While membrane separation technology holds promise as a solution, its widespread applicability necessitates overcoming significant obstacles related to corrosion resistance, alkali resistance, and the prevention of membrane fouling. This study presents a novel and highly efficient approach for oil–water separation, employing bioinspired, nanoporous metal–organic framework-modified basalt fiber fabrics (BFF). The integration of UiO-66-NH<sub>2</sub>, renowned for its high porosity and tunable functionalities, with a chitosan-dopamine (CS-DA) layer on BFFs creates a multifunctional membrane with enhanced hydrophilicity and underwater superoleophobicity. This bioinspired design (refers to engineering solutions that mimic natural structures or mechanisms to improve performance and efficiency), drawing inspiration from the structure and function of natural materials, results in superior oil–water separation performance, demonstrating excellent flux and oil rejection rates. The UiO-66-NH<sub>2</sub> effectively captures oil droplets due to its high porosity, while the CS-DA layer facilitates water permeability and promotes surface stability. Furthermore, the composite membrane exhibits exceptional stability and reusability, positioning it as a promising candidate for efficient and sustainable oil–water separation applications. This research showcases the potential of bioinspired design principles for developing innovative solutions to pressing environmental challenges.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00237","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioinspired Nanoporous MOF-Modified Basalt Fiber Fabrics for Efficient and Multifunctional Oil–Water Separation
Oily wastewater pollution is increasing globally. Conventional treatment methods often fail due to inefficiency and secondary contamination. Therefore, developing advanced membrane separation technologies is crucial. While membrane separation technology holds promise as a solution, its widespread applicability necessitates overcoming significant obstacles related to corrosion resistance, alkali resistance, and the prevention of membrane fouling. This study presents a novel and highly efficient approach for oil–water separation, employing bioinspired, nanoporous metal–organic framework-modified basalt fiber fabrics (BFF). The integration of UiO-66-NH2, renowned for its high porosity and tunable functionalities, with a chitosan-dopamine (CS-DA) layer on BFFs creates a multifunctional membrane with enhanced hydrophilicity and underwater superoleophobicity. This bioinspired design (refers to engineering solutions that mimic natural structures or mechanisms to improve performance and efficiency), drawing inspiration from the structure and function of natural materials, results in superior oil–water separation performance, demonstrating excellent flux and oil rejection rates. The UiO-66-NH2 effectively captures oil droplets due to its high porosity, while the CS-DA layer facilitates water permeability and promotes surface stability. Furthermore, the composite membrane exhibits exceptional stability and reusability, positioning it as a promising candidate for efficient and sustainable oil–water separation applications. This research showcases the potential of bioinspired design principles for developing innovative solutions to pressing environmental challenges.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.