目标加速硫氧化还原和无枝晶锂的速率决定步骤:异质界面和电子结构工程

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-26 DOI:10.1021/acsnano.5c05595
Qi Liang, Yunfei Bai, Kai Yao, Chengwei Ye, Xiaoya Zhou, Yu Chen, Shaochun Tang
{"title":"目标加速硫氧化还原和无枝晶锂的速率决定步骤:异质界面和电子结构工程","authors":"Qi Liang, Yunfei Bai, Kai Yao, Chengwei Ye, Xiaoya Zhou, Yu Chen, Shaochun Tang","doi":"10.1021/acsnano.5c05595","DOIUrl":null,"url":null,"abstract":"Currently, most catalysts for lithium–sulfur batteries suffer from some shortcomings, including restricted active sites and poor catalytic kinetics. Herein, we developed an advanced catalyst of V-MXene@octahedral porous carbon (MX@OPC), which features a “built-in interfacial electric field” (BIEF) and “dual-functional catalytic active sites” (DCASs), to target the accelerated rate-determining step in polysulfide redox kinetics and dendrite-free lithium behaviors. The well-designed heterointerface forms the BIEF due to the differences in work function and charge distribution, contributing to enhanced interfacial electron transfer and low lithium-ion diffusion barriers. The DCASs with superior Li<sub>2</sub>S<sub>4</sub> desorption efficiently catalyze the conversion from Li<sub>2</sub>S<sub>4</sub> to Li<sub>2</sub>S<sub>2</sub> by the distribution of relaxation times (DRT) analysis and density functional theory (DFT) calculations. The V-MXene exhibits strong lithophilicity, which facilitates uniform nucleation and dendrite-free growth of lithium. As a result, a battery with MX@OPC delivers a capacity fade rate per cycle as low as 0.017% over 1200 cycles at 2 C. Furthermore, MX@OPC renders a Li||Li symmetric cell to maintain a stable overpotential of 16 mV over 2500 h. This work provides inspiring insights into directed catalysis and generation of BIEF toward accelerating the rate-determining-step in sulfur redox and dendrite-free lithium deposition in Li–S batteries.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"69 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting Acceleration of the Rate-Determining Step in Sulfur Redox and Dendrite-Free Lithium: Heterointerface and Electron Structural Engineering\",\"authors\":\"Qi Liang, Yunfei Bai, Kai Yao, Chengwei Ye, Xiaoya Zhou, Yu Chen, Shaochun Tang\",\"doi\":\"10.1021/acsnano.5c05595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, most catalysts for lithium–sulfur batteries suffer from some shortcomings, including restricted active sites and poor catalytic kinetics. Herein, we developed an advanced catalyst of V-MXene@octahedral porous carbon (MX@OPC), which features a “built-in interfacial electric field” (BIEF) and “dual-functional catalytic active sites” (DCASs), to target the accelerated rate-determining step in polysulfide redox kinetics and dendrite-free lithium behaviors. The well-designed heterointerface forms the BIEF due to the differences in work function and charge distribution, contributing to enhanced interfacial electron transfer and low lithium-ion diffusion barriers. The DCASs with superior Li<sub>2</sub>S<sub>4</sub> desorption efficiently catalyze the conversion from Li<sub>2</sub>S<sub>4</sub> to Li<sub>2</sub>S<sub>2</sub> by the distribution of relaxation times (DRT) analysis and density functional theory (DFT) calculations. The V-MXene exhibits strong lithophilicity, which facilitates uniform nucleation and dendrite-free growth of lithium. As a result, a battery with MX@OPC delivers a capacity fade rate per cycle as low as 0.017% over 1200 cycles at 2 C. Furthermore, MX@OPC renders a Li||Li symmetric cell to maintain a stable overpotential of 16 mV over 2500 h. This work provides inspiring insights into directed catalysis and generation of BIEF toward accelerating the rate-determining-step in sulfur redox and dendrite-free lithium deposition in Li–S batteries.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c05595\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05595","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,大多数锂硫电池催化剂存在活性位点受限、催化动力学差等缺点。在此,我们开发了一种先进的V-MXene@octahedral多孔碳催化剂(MX@OPC),其具有“内置界面电场”(BIEF)和“双功能催化活性位点”(dcas),以加速多硫化物氧化还原动力学和无枝晶锂行为的速率决定步骤。设计良好的异质界面由于功函数和电荷分布的差异形成了BIEF,有助于增强界面电子转移和降低锂离子扩散势垒。通过弛缓时间分布(DRT)分析和密度泛函理论(DFT)计算,具有较强Li2S4脱附性能的dcas有效地催化了Li2S4向Li2S2的转化。V-MXene具有较强的亲石性,有利于锂的均匀成核和无枝晶生长。因此,含有MX@OPC的电池在1200个2c循环中,每个循环的容量衰减率低至0.017%。此外,MX@OPC使Li||Li对称电池在2500小时内保持16 mV的稳定过电位。这项工作为定向催化和BIEF的产生提供了启发,从而加速了Li -s电池中硫氧化还原和无枝晶锂沉积的速率决定步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Targeting Acceleration of the Rate-Determining Step in Sulfur Redox and Dendrite-Free Lithium: Heterointerface and Electron Structural Engineering

Targeting Acceleration of the Rate-Determining Step in Sulfur Redox and Dendrite-Free Lithium: Heterointerface and Electron Structural Engineering
Currently, most catalysts for lithium–sulfur batteries suffer from some shortcomings, including restricted active sites and poor catalytic kinetics. Herein, we developed an advanced catalyst of V-MXene@octahedral porous carbon (MX@OPC), which features a “built-in interfacial electric field” (BIEF) and “dual-functional catalytic active sites” (DCASs), to target the accelerated rate-determining step in polysulfide redox kinetics and dendrite-free lithium behaviors. The well-designed heterointerface forms the BIEF due to the differences in work function and charge distribution, contributing to enhanced interfacial electron transfer and low lithium-ion diffusion barriers. The DCASs with superior Li2S4 desorption efficiently catalyze the conversion from Li2S4 to Li2S2 by the distribution of relaxation times (DRT) analysis and density functional theory (DFT) calculations. The V-MXene exhibits strong lithophilicity, which facilitates uniform nucleation and dendrite-free growth of lithium. As a result, a battery with MX@OPC delivers a capacity fade rate per cycle as low as 0.017% over 1200 cycles at 2 C. Furthermore, MX@OPC renders a Li||Li symmetric cell to maintain a stable overpotential of 16 mV over 2500 h. This work provides inspiring insights into directed catalysis and generation of BIEF toward accelerating the rate-determining-step in sulfur redox and dendrite-free lithium deposition in Li–S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信