缺陷工程石墨烯的波纹主导机械软化

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Wael Joudi, Rika Saskia Windisch, Alberto Trentino, Diana Propst, Jacob Madsen, Toma Susi, Clemens Mangler, Kimmo Mustonen, Florian Libisch, Jani Kotakoski
{"title":"缺陷工程石墨烯的波纹主导机械软化","authors":"Wael Joudi, Rika Saskia Windisch, Alberto Trentino, Diana Propst, Jacob Madsen, Toma Susi, Clemens Mangler, Kimmo Mustonen, Florian Libisch, Jani Kotakoski","doi":"10.1103/physrevlett.134.166102","DOIUrl":null,"url":null,"abstract":"We measure the two-dimensional elastic modulus E</a:mi></a:mrow>2</a:mn>D</a:mi></a:mrow></a:msup></a:mrow></a:math> of atomically clean defect-engineered graphene with a known vacancy distribution and density in correlated ultrahigh vacuum experiments. The vacancies are introduced via low-energy (<d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:mo>&lt;</d:mo><d:mn>200</d:mn><d:mtext> </d:mtext><d:mtext> </d:mtext><d:mi>eV</d:mi></d:mrow></d:math>) Ar ion irradiation, and the atomic structure is obtained via semiautonomous scanning transmission electron microscopy and image analysis. Based on atomic force microscopy nanoindentation measurements, a decrease of <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msup><f:mi>E</f:mi><f:mrow><f:mn>2</f:mn><f:mi mathvariant=\"normal\">D</f:mi></f:mrow></f:msup></f:math> from 286 to <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mn>158</i:mn><i:mtext> </i:mtext><i:mtext> </i:mtext><i:mi mathvariant=\"normal\">N</i:mi><i:mo>/</i:mo><i:mi mathvariant=\"normal\">m</i:mi></i:mrow></i:math> is observed when measuring the same graphene membrane before and after introducing vacancies at a density of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mn>1.0</m:mn><m:mo>×</m:mo><m:msup><m:mrow><m:mn>10</m:mn></m:mrow><m:mrow><m:mn>13</m:mn></m:mrow></m:msup><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mrow><m:msup><m:mrow><m:mi>cm</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>2</m:mn></m:mrow></m:msup></m:mrow></m:mrow></m:math>. This decrease is significantly greater than what is predicted by most theoretical studies and in stark contrast to some measurements presented in the literature. With the assistance of atomistic simulations, we show that this softening is mostly due to corrugations caused by local strain at vacancies with two or more missing atoms, while the influence of single vacancies is negligible. We further demonstrate that the opposite effect can be measured when surface contamination is not removed before defect engineering. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"91 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrugation-Dominated Mechanical Softening of Defect-Engineered Graphene\",\"authors\":\"Wael Joudi, Rika Saskia Windisch, Alberto Trentino, Diana Propst, Jacob Madsen, Toma Susi, Clemens Mangler, Kimmo Mustonen, Florian Libisch, Jani Kotakoski\",\"doi\":\"10.1103/physrevlett.134.166102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measure the two-dimensional elastic modulus E</a:mi></a:mrow>2</a:mn>D</a:mi></a:mrow></a:msup></a:mrow></a:math> of atomically clean defect-engineered graphene with a known vacancy distribution and density in correlated ultrahigh vacuum experiments. The vacancies are introduced via low-energy (<d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:mrow><d:mo>&lt;</d:mo><d:mn>200</d:mn><d:mtext> </d:mtext><d:mtext> </d:mtext><d:mi>eV</d:mi></d:mrow></d:math>) Ar ion irradiation, and the atomic structure is obtained via semiautonomous scanning transmission electron microscopy and image analysis. Based on atomic force microscopy nanoindentation measurements, a decrease of <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:msup><f:mi>E</f:mi><f:mrow><f:mn>2</f:mn><f:mi mathvariant=\\\"normal\\\">D</f:mi></f:mrow></f:msup></f:math> from 286 to <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mrow><i:mn>158</i:mn><i:mtext> </i:mtext><i:mtext> </i:mtext><i:mi mathvariant=\\\"normal\\\">N</i:mi><i:mo>/</i:mo><i:mi mathvariant=\\\"normal\\\">m</i:mi></i:mrow></i:math> is observed when measuring the same graphene membrane before and after introducing vacancies at a density of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mrow><m:mn>1.0</m:mn><m:mo>×</m:mo><m:msup><m:mrow><m:mn>10</m:mn></m:mrow><m:mrow><m:mn>13</m:mn></m:mrow></m:msup><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mrow><m:msup><m:mrow><m:mi>cm</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>2</m:mn></m:mrow></m:msup></m:mrow></m:mrow></m:math>. This decrease is significantly greater than what is predicted by most theoretical studies and in stark contrast to some measurements presented in the literature. With the assistance of atomistic simulations, we show that this softening is mostly due to corrugations caused by local strain at vacancies with two or more missing atoms, while the influence of single vacancies is negligible. We further demonstrate that the opposite effect can be measured when surface contamination is not removed before defect engineering. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.166102\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.166102","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们在相关超高真空实验中测量了具有已知空位分布和密度的原子清洁缺陷工程石墨烯的二维弹性模量 E2D。空位是通过低能(<200 eV)氩离子照射引入的,原子结构则是通过半自主扫描透射电子显微镜和图像分析获得的。根据原子力显微镜纳米压痕测量,在以 1.0×1013 cm-2 的密度引入空位之前和之后测量相同的石墨烯膜时,观察到 E2D 从 286 牛米下降到 158 牛米。这一下降明显大于大多数理论研究的预测值,与文献中的一些测量结果形成鲜明对比。在原子模拟的帮助下,我们证明了这种软化主要是由两个或两个以上原子缺失的空位处的局部应变引起的波纹造成的,而单个空位的影响可以忽略不计。我们还进一步证明,如果在缺陷工程之前没有清除表面污染,则可以测量到相反的效果。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrugation-Dominated Mechanical Softening of Defect-Engineered Graphene
We measure the two-dimensional elastic modulus E2D of atomically clean defect-engineered graphene with a known vacancy distribution and density in correlated ultrahigh vacuum experiments. The vacancies are introduced via low-energy (<200 eV) Ar ion irradiation, and the atomic structure is obtained via semiautonomous scanning transmission electron microscopy and image analysis. Based on atomic force microscopy nanoindentation measurements, a decrease of E2D from 286 to 158 N/m is observed when measuring the same graphene membrane before and after introducing vacancies at a density of 1.0×1013 cm2. This decrease is significantly greater than what is predicted by most theoretical studies and in stark contrast to some measurements presented in the literature. With the assistance of atomistic simulations, we show that this softening is mostly due to corrugations caused by local strain at vacancies with two or more missing atoms, while the influence of single vacancies is negligible. We further demonstrate that the opposite effect can be measured when surface contamination is not removed before defect engineering. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信