揭示冰膜纳米孔的愈合机制

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-26 DOI:10.1002/smll.202502245
Pengfei Nan, Kang Wu, Qizhu Li, Yangrui Liu, Hongzheng Wang, Yangjian Lin, Jinlong Zhu, Jing Wu, Fang Lin, Yumei Wang, Binghui Ge
{"title":"揭示冰膜纳米孔的愈合机制","authors":"Pengfei Nan, Kang Wu, Qizhu Li, Yangrui Liu, Hongzheng Wang, Yangjian Lin, Jinlong Zhu, Jing Wu, Fang Lin, Yumei Wang, Binghui Ge","doi":"10.1002/smll.202502245","DOIUrl":null,"url":null,"abstract":"As a ubiquitous substance in nature, ice has attracted substantial research interest across a variety of fields, including physics, environmental science, biology, and cryopreservation. However, the intricate structural transformations within ice remain elusive owing to the stringent experimental constraints. Herein, the detailed evolution of ice nanopores, including expansion and healing, is investigated using advanced cryo‐electron microscopy combined with low‐dose techniques, and the underlying mechanisms are revealed through surface‐free energy analysis. Three pivotal factors are identified as driving the evolution mechanism of ice nanopores: the nanopore geometry and dimensions and the thickness of the ice film. This research not only provides novel insights into the dynamic structural evolution of ice at the molecular scale but also paves the way for a deeper understanding of the fundamental properties and behaviors of ice. Moreover, the healing mechanism of the nanopores is anticipated to be utilized in ice manipulation and nanofabrication.","PeriodicalId":228,"journal":{"name":"Small","volume":"15 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Healing Mechanism of Nanopores in Ice Films\",\"authors\":\"Pengfei Nan, Kang Wu, Qizhu Li, Yangrui Liu, Hongzheng Wang, Yangjian Lin, Jinlong Zhu, Jing Wu, Fang Lin, Yumei Wang, Binghui Ge\",\"doi\":\"10.1002/smll.202502245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a ubiquitous substance in nature, ice has attracted substantial research interest across a variety of fields, including physics, environmental science, biology, and cryopreservation. However, the intricate structural transformations within ice remain elusive owing to the stringent experimental constraints. Herein, the detailed evolution of ice nanopores, including expansion and healing, is investigated using advanced cryo‐electron microscopy combined with low‐dose techniques, and the underlying mechanisms are revealed through surface‐free energy analysis. Three pivotal factors are identified as driving the evolution mechanism of ice nanopores: the nanopore geometry and dimensions and the thickness of the ice film. This research not only provides novel insights into the dynamic structural evolution of ice at the molecular scale but also paves the way for a deeper understanding of the fundamental properties and behaviors of ice. Moreover, the healing mechanism of the nanopores is anticipated to be utilized in ice manipulation and nanofabrication.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202502245\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502245","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

冰作为自然界中普遍存在的物质,在物理学、环境科学、生物学和低温保存等多个领域引起了广泛的研究兴趣。然而,由于严格的实验限制,冰内部复杂的结构变化仍然难以捉摸。本文利用先进的低温电子显微镜结合低剂量技术研究了冰纳米孔的详细演化,包括膨胀和愈合,并通过表面自由能分析揭示了潜在的机制。研究发现驱动冰纳米孔演化机制的关键因素有三个:纳米孔的几何形状和尺寸以及冰膜的厚度。这项研究不仅为冰在分子尺度上的动态结构演变提供了新的见解,而且为更深入地了解冰的基本性质和行为铺平了道路。此外,纳米孔的愈合机制有望在冰操作和纳米制造中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Healing Mechanism of Nanopores in Ice Films
As a ubiquitous substance in nature, ice has attracted substantial research interest across a variety of fields, including physics, environmental science, biology, and cryopreservation. However, the intricate structural transformations within ice remain elusive owing to the stringent experimental constraints. Herein, the detailed evolution of ice nanopores, including expansion and healing, is investigated using advanced cryo‐electron microscopy combined with low‐dose techniques, and the underlying mechanisms are revealed through surface‐free energy analysis. Three pivotal factors are identified as driving the evolution mechanism of ice nanopores: the nanopore geometry and dimensions and the thickness of the ice film. This research not only provides novel insights into the dynamic structural evolution of ice at the molecular scale but also paves the way for a deeper understanding of the fundamental properties and behaviors of ice. Moreover, the healing mechanism of the nanopores is anticipated to be utilized in ice manipulation and nanofabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信