有机I型光敏剂分子设计研究进展

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-26 DOI:10.1002/smll.202501911
Tao Xiong, Yingchao Chen, Mingle Li, Xiaoqiang Chen, Xiaojun Peng
{"title":"有机I型光敏剂分子设计研究进展","authors":"Tao Xiong, Yingchao Chen, Mingle Li, Xiaoqiang Chen, Xiaojun Peng","doi":"10.1002/smll.202501911","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) represents a high‐efficient and non‐invasive therapeutic modality for current and future tumor treatments, drawing extensive attention in the fields of antitumor drug and clinical phototherapy. In recent years, the photosensitizer (PS) market and PDT clinical applications have expanded to address various cancers and skin diseases. However, hypoxic environment within tumors poses a substantial challenge to the therapeutic capability of reactive oxygen species‐dependent PDT. Consequently, researches have increasingly focus from the type II to type I PDT mechanism, which relies on radical production with less or no oxygen dependence. Despite significant progress in the development of type I PSs, a holistic understanding regarding the design principles for these molecules remains elusive. Specifically, electron transfer‐mediated type I PDT are extensively studied in recent years but is insufficiently addressed in existing reviews. This review systematically summarizes recent advancements in the molecular design rationales of organic type I PSs, categorizing them into three key fundamental strategies: modulating PS charge distribution, singlet oxygen forbidden via low triplet excited state, and accelerating PS radical formation via inducing electron transfer. This review aims to offer valuable insights for the future type I PS design and the advancement of anti‐hypoxia PDT.","PeriodicalId":228,"journal":{"name":"Small","volume":"34 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress of Molecular Design in Organic Type I Photosensitizers\",\"authors\":\"Tao Xiong, Yingchao Chen, Mingle Li, Xiaoqiang Chen, Xiaojun Peng\",\"doi\":\"10.1002/smll.202501911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodynamic therapy (PDT) represents a high‐efficient and non‐invasive therapeutic modality for current and future tumor treatments, drawing extensive attention in the fields of antitumor drug and clinical phototherapy. In recent years, the photosensitizer (PS) market and PDT clinical applications have expanded to address various cancers and skin diseases. However, hypoxic environment within tumors poses a substantial challenge to the therapeutic capability of reactive oxygen species‐dependent PDT. Consequently, researches have increasingly focus from the type II to type I PDT mechanism, which relies on radical production with less or no oxygen dependence. Despite significant progress in the development of type I PSs, a holistic understanding regarding the design principles for these molecules remains elusive. Specifically, electron transfer‐mediated type I PDT are extensively studied in recent years but is insufficiently addressed in existing reviews. This review systematically summarizes recent advancements in the molecular design rationales of organic type I PSs, categorizing them into three key fundamental strategies: modulating PS charge distribution, singlet oxygen forbidden via low triplet excited state, and accelerating PS radical formation via inducing electron transfer. This review aims to offer valuable insights for the future type I PS design and the advancement of anti‐hypoxia PDT.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501911\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501911","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)是当前和未来肿瘤治疗中一种高效、无创的治疗方式,在抗肿瘤药物和临床光疗领域受到广泛关注。近年来,光敏剂(PS)市场和PDT临床应用已经扩大到治疗各种癌症和皮肤病。然而,肿瘤内的缺氧环境对依赖活性氧的PDT的治疗能力提出了实质性的挑战。因此,对II型PDT机制的研究越来越多地集中到I型PDT机制上,这种机制依赖于自由基的产生,对氧的依赖较少或不依赖。尽管I型ps的发展取得了重大进展,但对这些分子的设计原则的整体理解仍然难以捉摸。具体来说,电子转移介导的I型PDT近年来得到了广泛的研究,但在现有的综述中没有得到充分的解决。本文系统总结了近年来有机I型PS分子设计原理的研究进展,并将其归纳为三个关键的基本策略:调节PS电荷分布、通过低三重态激发态禁止单线态氧和通过诱导电子转移加速PS自由基形成。本文综述旨在为未来I型PS的设计和抗缺氧PDT的发展提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Progress of Molecular Design in Organic Type I Photosensitizers
Photodynamic therapy (PDT) represents a high‐efficient and non‐invasive therapeutic modality for current and future tumor treatments, drawing extensive attention in the fields of antitumor drug and clinical phototherapy. In recent years, the photosensitizer (PS) market and PDT clinical applications have expanded to address various cancers and skin diseases. However, hypoxic environment within tumors poses a substantial challenge to the therapeutic capability of reactive oxygen species‐dependent PDT. Consequently, researches have increasingly focus from the type II to type I PDT mechanism, which relies on radical production with less or no oxygen dependence. Despite significant progress in the development of type I PSs, a holistic understanding regarding the design principles for these molecules remains elusive. Specifically, electron transfer‐mediated type I PDT are extensively studied in recent years but is insufficiently addressed in existing reviews. This review systematically summarizes recent advancements in the molecular design rationales of organic type I PSs, categorizing them into three key fundamental strategies: modulating PS charge distribution, singlet oxygen forbidden via low triplet excited state, and accelerating PS radical formation via inducing electron transfer. This review aims to offer valuable insights for the future type I PS design and the advancement of anti‐hypoxia PDT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信