新西兰陶普火山北部的级联地震群

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
S. Aber, C. J. Ebinger, A. C. Gase, C. Kalugana, F. Illsley-Kemp, I. Hamling, S. Sabir, M. K. Savage, J. Eccles, S. Hreinsdottir, J. Ristau, J. James-Le
{"title":"新西兰陶普火山北部的级联地震群","authors":"S. Aber,&nbsp;C. J. Ebinger,&nbsp;A. C. Gase,&nbsp;C. Kalugana,&nbsp;F. Illsley-Kemp,&nbsp;I. Hamling,&nbsp;S. Sabir,&nbsp;M. K. Savage,&nbsp;J. Eccles,&nbsp;S. Hreinsdottir,&nbsp;J. Ristau,&nbsp;J. James-Le","doi":"10.1029/2024GC012079","DOIUrl":null,"url":null,"abstract":"<p>The spatiotemporal characteristics of infrequent back-arc rifting events and their relationships to volcanic unrest as well as other transient processes within the subduction system are not well known. We report 10 spatio-temporal swarms of earthquakes that occurred along ∼175 km of the northern and central Taupō Volcanic Zone (TVZ) March–September 2019. The swarms lack clear mainshock-aftershock distributions, suggesting involvement of pressurized fluids. The most energetic swarms occurred beneath the southwestern flank of Whakaari/White Island volcano (WI) and were accompanied by elevated SO<sub>2</sub> emissions and ∼8 mm southwest displacement of the edifice. Focal mechanisms of the WI swarms suggest horizontal dilation in the direction of tectonic extension achieved by slip along networks of closely spaced, NE-striking normal faults linked by oblique-slip to strike-slip faults. Given the small GNSS displacements and upward-migrating swarms, we favor the interpretation that magmatic volatiles were released along faults in response to changes in crustal stress. Based on the punctuated, cascading nature of swarms along the northern TVZ, we hypothesize that faults and magmatic systems are fluid-rich, experiencing aseismic creep, and critically stressed, raising the possibility that small changes in crustal stress from slow slip along the Hikurangi subduction zone caused a reduction in the minimum horizontal stress. This change occurred along the entire northern TVZ over ∼5 months, potentially contributing to widespread volcanic unrest. The probable release of magmatic fluids from shallow magma bodies in the vicinity of WI between May and June argues against a causal relation to the 9 December 2019 WI eruption.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012079","citationCount":"0","resultStr":"{\"title\":\"Cascading Earthquake Swarms in the Northern Taupō Volcanic Zone, New Zealand\",\"authors\":\"S. Aber,&nbsp;C. J. Ebinger,&nbsp;A. C. Gase,&nbsp;C. Kalugana,&nbsp;F. Illsley-Kemp,&nbsp;I. Hamling,&nbsp;S. Sabir,&nbsp;M. K. Savage,&nbsp;J. Eccles,&nbsp;S. Hreinsdottir,&nbsp;J. Ristau,&nbsp;J. James-Le\",\"doi\":\"10.1029/2024GC012079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spatiotemporal characteristics of infrequent back-arc rifting events and their relationships to volcanic unrest as well as other transient processes within the subduction system are not well known. We report 10 spatio-temporal swarms of earthquakes that occurred along ∼175 km of the northern and central Taupō Volcanic Zone (TVZ) March–September 2019. The swarms lack clear mainshock-aftershock distributions, suggesting involvement of pressurized fluids. The most energetic swarms occurred beneath the southwestern flank of Whakaari/White Island volcano (WI) and were accompanied by elevated SO<sub>2</sub> emissions and ∼8 mm southwest displacement of the edifice. Focal mechanisms of the WI swarms suggest horizontal dilation in the direction of tectonic extension achieved by slip along networks of closely spaced, NE-striking normal faults linked by oblique-slip to strike-slip faults. Given the small GNSS displacements and upward-migrating swarms, we favor the interpretation that magmatic volatiles were released along faults in response to changes in crustal stress. Based on the punctuated, cascading nature of swarms along the northern TVZ, we hypothesize that faults and magmatic systems are fluid-rich, experiencing aseismic creep, and critically stressed, raising the possibility that small changes in crustal stress from slow slip along the Hikurangi subduction zone caused a reduction in the minimum horizontal stress. This change occurred along the entire northern TVZ over ∼5 months, potentially contributing to widespread volcanic unrest. The probable release of magmatic fluids from shallow magma bodies in the vicinity of WI between May and June argues against a causal relation to the 9 December 2019 WI eruption.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012079\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012079\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012079","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

不常见的弧后裂谷事件的时空特征及其与火山不动和俯冲系统内其他瞬变过程的关系尚不清楚。我们报告了2019年3月至9月发生在陶普火山带(TVZ)北部和中部约175公里处的10个时空地震群。蝗群缺乏明显的主震-余震分布,表明有加压流体参与。最活跃的蝗群发生在Whakaari/White Island火山(WI)的西南侧翼下方,并伴随着SO2排放量的增加和建筑物西南方向约8毫米的位移。WI群的震源机制表明,在构造伸展方向上的水平扩张是由由斜滑和走滑断层连接的密集的ne向正断层网络的滑动实现的。考虑到较小的GNSS位移和向上迁移的群,我们倾向于岩浆挥发物沿着断层释放以响应地应力变化的解释。根据沿北TVZ的间断、级联性质,我们假设断层和岩浆系统是富流体的,经历了地震蠕变和临界应力,提出了沿Hikurangi俯冲带缓慢滑动引起的地壳应力的微小变化导致最小水平应力降低的可能性。这种变化发生在整个北部TVZ约5个月,可能导致广泛的火山动荡。5月至6月期间,夏威夷附近的浅层岩浆体可能释放了岩浆流体,这与2019年12月9日的夏威夷火山喷发没有因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cascading Earthquake Swarms in the Northern Taupō Volcanic Zone, New Zealand

Cascading Earthquake Swarms in the Northern Taupō Volcanic Zone, New Zealand

The spatiotemporal characteristics of infrequent back-arc rifting events and their relationships to volcanic unrest as well as other transient processes within the subduction system are not well known. We report 10 spatio-temporal swarms of earthquakes that occurred along ∼175 km of the northern and central Taupō Volcanic Zone (TVZ) March–September 2019. The swarms lack clear mainshock-aftershock distributions, suggesting involvement of pressurized fluids. The most energetic swarms occurred beneath the southwestern flank of Whakaari/White Island volcano (WI) and were accompanied by elevated SO2 emissions and ∼8 mm southwest displacement of the edifice. Focal mechanisms of the WI swarms suggest horizontal dilation in the direction of tectonic extension achieved by slip along networks of closely spaced, NE-striking normal faults linked by oblique-slip to strike-slip faults. Given the small GNSS displacements and upward-migrating swarms, we favor the interpretation that magmatic volatiles were released along faults in response to changes in crustal stress. Based on the punctuated, cascading nature of swarms along the northern TVZ, we hypothesize that faults and magmatic systems are fluid-rich, experiencing aseismic creep, and critically stressed, raising the possibility that small changes in crustal stress from slow slip along the Hikurangi subduction zone caused a reduction in the minimum horizontal stress. This change occurred along the entire northern TVZ over ∼5 months, potentially contributing to widespread volcanic unrest. The probable release of magmatic fluids from shallow magma bodies in the vicinity of WI between May and June argues against a causal relation to the 9 December 2019 WI eruption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信