{"title":"电弧增材制造中方向翻转问题的多变量QFT控制","authors":"Manuel Masenlle, Jorge Elso, J. Xabier Ostolaza","doi":"10.1049/cth2.12765","DOIUrl":null,"url":null,"abstract":"<p>Additive metal manufacturing (AM), particularly Wire Arc Additive Manufacturing (WAAM), offers a compelling alternative to traditional machining methods. While AM presents advantages such as reduced material waste and lower production costs, challenges remain in effectively controlling the process to prevent defects and optimise material deposition. This article proposes a multivariable control system for WAAM utilising Quantitative Feedback Theory (QFT) to maintain the shape of the heat-affected zone (HAZ) during transitions in direction flips during layer deposition. By modelling these direction flips as predictable disturbances, the full potential of QFT to integrate feedback and feedforward actions is exploited. The resulting multivariable control laws seek to minimise temperature variation in two critical points around the welding pool by adequately manipulating the power and speed of the heat source. A benchmark system is established to evaluate the effectiveness of the proposed control system. The results demonstrate significant improvement in temperature control, leading to enhanced layer construction quality and reduced need for height corrections or cooling pauses.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12765","citationCount":"0","resultStr":"{\"title\":\"Multivariable QFT control of the direction flip problem in wire arc additive manufacturing\",\"authors\":\"Manuel Masenlle, Jorge Elso, J. Xabier Ostolaza\",\"doi\":\"10.1049/cth2.12765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Additive metal manufacturing (AM), particularly Wire Arc Additive Manufacturing (WAAM), offers a compelling alternative to traditional machining methods. While AM presents advantages such as reduced material waste and lower production costs, challenges remain in effectively controlling the process to prevent defects and optimise material deposition. This article proposes a multivariable control system for WAAM utilising Quantitative Feedback Theory (QFT) to maintain the shape of the heat-affected zone (HAZ) during transitions in direction flips during layer deposition. By modelling these direction flips as predictable disturbances, the full potential of QFT to integrate feedback and feedforward actions is exploited. The resulting multivariable control laws seek to minimise temperature variation in two critical points around the welding pool by adequately manipulating the power and speed of the heat source. A benchmark system is established to evaluate the effectiveness of the proposed control system. The results demonstrate significant improvement in temperature control, leading to enhanced layer construction quality and reduced need for height corrections or cooling pauses.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12765\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12765\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12765","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multivariable QFT control of the direction flip problem in wire arc additive manufacturing
Additive metal manufacturing (AM), particularly Wire Arc Additive Manufacturing (WAAM), offers a compelling alternative to traditional machining methods. While AM presents advantages such as reduced material waste and lower production costs, challenges remain in effectively controlling the process to prevent defects and optimise material deposition. This article proposes a multivariable control system for WAAM utilising Quantitative Feedback Theory (QFT) to maintain the shape of the heat-affected zone (HAZ) during transitions in direction flips during layer deposition. By modelling these direction flips as predictable disturbances, the full potential of QFT to integrate feedback and feedforward actions is exploited. The resulting multivariable control laws seek to minimise temperature variation in two critical points around the welding pool by adequately manipulating the power and speed of the heat source. A benchmark system is established to evaluate the effectiveness of the proposed control system. The results demonstrate significant improvement in temperature control, leading to enhanced layer construction quality and reduced need for height corrections or cooling pauses.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.