气候变化下人为排放变化情景对美国国家和州尺度水碳平衡的影响

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-04-26 DOI:10.1029/2024EF004853
L. Zhang, K. Duan, Y. Zhang, G. Sun, X. Liang
{"title":"气候变化下人为排放变化情景对美国国家和州尺度水碳平衡的影响","authors":"L. Zhang,&nbsp;K. Duan,&nbsp;Y. Zhang,&nbsp;G. Sun,&nbsp;X. Liang","doi":"10.1029/2024EF004853","DOIUrl":null,"url":null,"abstract":"<p>The U.S. water supply and carbon sequestration are increasingly threatened by future climate change and air pollution. This study investigates the ecohydrological responses to the individual and combined impacts of climate change and anthropogenic emission (referring only to air pollutants, excluding greenhouse gases) changes at two spatial scales by coupling a regional online-coupled meteorology and chemistry model (WRF-Chem) and a water balance model (WaSSI). Combined effects of climate change and anthropogenic emission changes in 2046–2055 relative to 2001–2010 over the US enhance hydrological cycle and carbon sequestration. However, a drying trend occurs in the central and part of the western U.S. Climate change is projected to dominate the ecohydrological changes in most regions. Anthropogenic emission changes under 2001–2010 climate conditions cools down inland water resource regions with 0.01–0.15°C, moisturizes the east and dry the west U.S. More stringent anthropogenic emission control enhances precipitation and ecosystem production in the east and west but has an opposite trend in the central U.S. The ecohydrological modeling in California and North Carolina based on 4-km resolution meteorological data in 2050 and 2005 shows varying changes in magnitudes and spatial patterns compared to results based on 36-km resolution meteorological data. Projected changes in air pollutant emissions may accelerate climatic warming in coastal areas and the state of New Mexico and decrease precipitation, runoff, and carbon sequestration in part of the western U.S. Strategies to address future possible problems such as heatwaves, water stress, and ecosystem productivity should consider the varying interplay between air quality control and climate change at different spatial scales.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 4","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004853","citationCount":"0","resultStr":"{\"title\":\"Impacts of Anthropogenic Emission Change Scenarios on U.S. Water and Carbon Balances at National and State Scales in a Changing Climate\",\"authors\":\"L. Zhang,&nbsp;K. Duan,&nbsp;Y. Zhang,&nbsp;G. Sun,&nbsp;X. Liang\",\"doi\":\"10.1029/2024EF004853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The U.S. water supply and carbon sequestration are increasingly threatened by future climate change and air pollution. This study investigates the ecohydrological responses to the individual and combined impacts of climate change and anthropogenic emission (referring only to air pollutants, excluding greenhouse gases) changes at two spatial scales by coupling a regional online-coupled meteorology and chemistry model (WRF-Chem) and a water balance model (WaSSI). Combined effects of climate change and anthropogenic emission changes in 2046–2055 relative to 2001–2010 over the US enhance hydrological cycle and carbon sequestration. However, a drying trend occurs in the central and part of the western U.S. Climate change is projected to dominate the ecohydrological changes in most regions. Anthropogenic emission changes under 2001–2010 climate conditions cools down inland water resource regions with 0.01–0.15°C, moisturizes the east and dry the west U.S. More stringent anthropogenic emission control enhances precipitation and ecosystem production in the east and west but has an opposite trend in the central U.S. The ecohydrological modeling in California and North Carolina based on 4-km resolution meteorological data in 2050 and 2005 shows varying changes in magnitudes and spatial patterns compared to results based on 36-km resolution meteorological data. Projected changes in air pollutant emissions may accelerate climatic warming in coastal areas and the state of New Mexico and decrease precipitation, runoff, and carbon sequestration in part of the western U.S. Strategies to address future possible problems such as heatwaves, water stress, and ecosystem productivity should consider the varying interplay between air quality control and climate change at different spatial scales.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004853\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004853\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004853","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

未来气候变化和空气污染日益威胁到美国的供水和碳封存。本研究通过区域在线耦合气象化学模型(WRF-Chem)和水平衡模型(WaSSI),在两个空间尺度上研究了气候变化和人为排放(仅指空气污染物,不包括温室气体)变化对生态水文的个别和综合影响。相对于2001-2010年,2046-2055年气候变化和人为排放变化的综合效应增强了美国的水文循环和碳固存。然而,美国中部和西部部分地区出现了干旱趋势。气候变化预计将主导大多数地区的生态水文变化。2001-2010年气候条件下人为排放变化使内陆水资源区降温0.01 ~ 0.15℃;更严格的人为排放控制增加了东部和西部的降水和生态系统生产,但在美国中部有相反的趋势。与基于36公里分辨率气象数据的结果相比,基于4公里分辨率气象数据的2050年和2005年加利福尼亚和北卡罗来纳州的生态水文模型显示出不同的幅度和空间格局变化。预计空气污染物排放的变化可能会加速沿海地区和新墨西哥州的气候变暖,并减少美国西部部分地区的降水、径流和碳固存。解决未来可能出现的问题(如热浪、水资源压力和生态系统生产力)的战略应考虑不同空间尺度上空气质量控制与气候变化之间的不同相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impacts of Anthropogenic Emission Change Scenarios on U.S. Water and Carbon Balances at National and State Scales in a Changing Climate

Impacts of Anthropogenic Emission Change Scenarios on U.S. Water and Carbon Balances at National and State Scales in a Changing Climate

The U.S. water supply and carbon sequestration are increasingly threatened by future climate change and air pollution. This study investigates the ecohydrological responses to the individual and combined impacts of climate change and anthropogenic emission (referring only to air pollutants, excluding greenhouse gases) changes at two spatial scales by coupling a regional online-coupled meteorology and chemistry model (WRF-Chem) and a water balance model (WaSSI). Combined effects of climate change and anthropogenic emission changes in 2046–2055 relative to 2001–2010 over the US enhance hydrological cycle and carbon sequestration. However, a drying trend occurs in the central and part of the western U.S. Climate change is projected to dominate the ecohydrological changes in most regions. Anthropogenic emission changes under 2001–2010 climate conditions cools down inland water resource regions with 0.01–0.15°C, moisturizes the east and dry the west U.S. More stringent anthropogenic emission control enhances precipitation and ecosystem production in the east and west but has an opposite trend in the central U.S. The ecohydrological modeling in California and North Carolina based on 4-km resolution meteorological data in 2050 and 2005 shows varying changes in magnitudes and spatial patterns compared to results based on 36-km resolution meteorological data. Projected changes in air pollutant emissions may accelerate climatic warming in coastal areas and the state of New Mexico and decrease precipitation, runoff, and carbon sequestration in part of the western U.S. Strategies to address future possible problems such as heatwaves, water stress, and ecosystem productivity should consider the varying interplay between air quality control and climate change at different spatial scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信