全球稻田清查(GRPI):基于Landsat卫星淹没数据的水稻农业甲烷排放高分辨率清查

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-04-26 DOI:10.1029/2024EF005479
Zichong Chen, Haipeng Lin, Nicholas Balasus, Andy Hardy, James D. East, Yuzhong Zhang, Benjamin R. K. Runkle, Sarah E. Hancock, Charles A. Taylor, Xinming Du, Bjoern Ole Sander, Daniel J. Jacob
{"title":"全球稻田清查(GRPI):基于Landsat卫星淹没数据的水稻农业甲烷排放高分辨率清查","authors":"Zichong Chen,&nbsp;Haipeng Lin,&nbsp;Nicholas Balasus,&nbsp;Andy Hardy,&nbsp;James D. East,&nbsp;Yuzhong Zhang,&nbsp;Benjamin R. K. Runkle,&nbsp;Sarah E. Hancock,&nbsp;Charles A. Taylor,&nbsp;Xinming Du,&nbsp;Bjoern Ole Sander,&nbsp;Daniel J. Jacob","doi":"10.1029/2024EF005479","DOIUrl":null,"url":null,"abstract":"<p>Rice agriculture is a major source of atmospheric methane, but current emission inventories are highly uncertain, mostly due to poor rice-specific inundation data. Inversions of atmospheric methane observations can help to better quantify rice emissions but require high-resolution prior information on the location and timing of emissions. Here we use Landsat satellite data at 30 m resolution to map the global monthly distribution of rice paddy fractional areas on a 0.1° × 0.1° (∼10 × 10 km) grid by optimizing an algorithm for flooded vegetation and combining it with a 30 m global cropland database and rice-specific data. We validate this global rice paddy map with an independent US rice database and with seasonal flux measurements from the FLUXNET CH<sub>4</sub> network, estimating errors on rice area fraction of 31% on the 0.1° × 0.1° grid and 10% regionally. We combine the rice paddy map with an extensive global data set of emission factors (EFs) per unit of rice paddy area. The resulting Global Rice Paddy Inventory (GRPI) provides methane emission estimates at 0.1° × 0.1° (∼10 × 10 km) spatial resolution and monthly resolution. Our global emission of 39.3 ± 4.7 Tg a<sup>−1</sup> for 2022 (best estimate and error standard deviation) is higher than previous inventories that use outdated rice maps and IPCC-recommended EFs now considered to be too low. China is the largest rice emitter in GRPI (8.2 ± 1.0 Tg a<sup>−1</sup>), followed by India (6.5 ± 1.0 Tg a<sup>−1</sup>), Bangladesh (5.7 ± 1.2 Tg a<sup>−1</sup>), Vietnam (5.7 ± 1.0 Tg a<sup>−1</sup>), and Thailand (4.4 ± 0.9 Tg a<sup>−1</sup>). These five countries together account for 78% of global total rice emissions. Seasonality of emissions varies considerably between and within individual countries reflecting differences in climate and crop practices. We define a rice methane intensity (methane emission per unit of rice produced) to assess the potential of mitigating methane emission without compromising food security. We find national methane intensities ranging from 10 to 120 kg methane per ton of rice produced (global mean 51) for major rice-growing countries. Countries can achieve low intensities with high-yield cultivars, upland rice agriculture, water management, and organic matter management.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 4","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005479","citationCount":"0","resultStr":"{\"title\":\"Global Rice Paddy Inventory (GRPI): A High-Resolution Inventory of Methane Emissions From Rice Agriculture Based on Landsat Satellite Inundation Data\",\"authors\":\"Zichong Chen,&nbsp;Haipeng Lin,&nbsp;Nicholas Balasus,&nbsp;Andy Hardy,&nbsp;James D. East,&nbsp;Yuzhong Zhang,&nbsp;Benjamin R. K. Runkle,&nbsp;Sarah E. Hancock,&nbsp;Charles A. Taylor,&nbsp;Xinming Du,&nbsp;Bjoern Ole Sander,&nbsp;Daniel J. Jacob\",\"doi\":\"10.1029/2024EF005479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rice agriculture is a major source of atmospheric methane, but current emission inventories are highly uncertain, mostly due to poor rice-specific inundation data. Inversions of atmospheric methane observations can help to better quantify rice emissions but require high-resolution prior information on the location and timing of emissions. Here we use Landsat satellite data at 30 m resolution to map the global monthly distribution of rice paddy fractional areas on a 0.1° × 0.1° (∼10 × 10 km) grid by optimizing an algorithm for flooded vegetation and combining it with a 30 m global cropland database and rice-specific data. We validate this global rice paddy map with an independent US rice database and with seasonal flux measurements from the FLUXNET CH<sub>4</sub> network, estimating errors on rice area fraction of 31% on the 0.1° × 0.1° grid and 10% regionally. We combine the rice paddy map with an extensive global data set of emission factors (EFs) per unit of rice paddy area. The resulting Global Rice Paddy Inventory (GRPI) provides methane emission estimates at 0.1° × 0.1° (∼10 × 10 km) spatial resolution and monthly resolution. Our global emission of 39.3 ± 4.7 Tg a<sup>−1</sup> for 2022 (best estimate and error standard deviation) is higher than previous inventories that use outdated rice maps and IPCC-recommended EFs now considered to be too low. China is the largest rice emitter in GRPI (8.2 ± 1.0 Tg a<sup>−1</sup>), followed by India (6.5 ± 1.0 Tg a<sup>−1</sup>), Bangladesh (5.7 ± 1.2 Tg a<sup>−1</sup>), Vietnam (5.7 ± 1.0 Tg a<sup>−1</sup>), and Thailand (4.4 ± 0.9 Tg a<sup>−1</sup>). These five countries together account for 78% of global total rice emissions. Seasonality of emissions varies considerably between and within individual countries reflecting differences in climate and crop practices. We define a rice methane intensity (methane emission per unit of rice produced) to assess the potential of mitigating methane emission without compromising food security. We find national methane intensities ranging from 10 to 120 kg methane per ton of rice produced (global mean 51) for major rice-growing countries. Countries can achieve low intensities with high-yield cultivars, upland rice agriculture, water management, and organic matter management.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005479\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005479\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005479","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水稻农业是大气甲烷的主要来源,但目前的排放清单高度不确定,这主要是由于缺乏特定水稻的淹没数据。大气甲烷观测值的反演有助于更好地量化水稻排放,但需要关于排放地点和时间的高分辨率先验信息。在这里,我们使用30米分辨率的Landsat卫星数据,通过优化淹水植被算法,并将其与30米全球农田数据库和水稻特定数据相结合,在0.1°× 0.1°(~ 10 × 10公里)网格上绘制全球稻田分蘖面积的月度分布。我们利用独立的美国水稻数据库和FLUXNET CH4网络的季节通量测量值验证了这张全球水稻地图,在0.1°× 0.1°网格上估计水稻面积分数的误差为31%,在区域上估计误差为10%。我们将稻田地图与广泛的全球单位稻田面积排放因子(EFs)数据集结合起来。由此产生的全球稻田清查(GRPI)提供了0.1°× 0.1°(~ 10 × 10公里)空间分辨率和月分辨率的甲烷排放估算。到2022年,我们的全球排放量为39.3±4.7 Tg a−1(最佳估计值和误差标准偏差),高于以前使用过时的水稻图和ipcc推荐的EFs(目前被认为过低)的清单。中国是GRPI中最大的大米排放国(8.2±1.0 Tg a−1),其次是印度(6.5±1.0 Tg a−1),孟加拉国(5.7±1.2 Tg a−1),越南(5.7±1.0 Tg a−1)和泰国(4.4±0.9 Tg a−1)。这五个国家加起来占全球大米总排放量的78%。各国之间和各国内部排放的季节性差异很大,反映了气候和作物做法的差异。我们定义了水稻甲烷强度(每单位水稻生产的甲烷排放量),以评估在不损害粮食安全的情况下减少甲烷排放的潜力。我们发现,主要水稻生产国的国家甲烷强度在每生产一吨大米10到120千克甲烷之间(全球平均为51千克)。各国可以通过高产品种、旱稻农业、水资源管理和有机质管理实现低强度生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Rice Paddy Inventory (GRPI): A High-Resolution Inventory of Methane Emissions From Rice Agriculture Based on Landsat Satellite Inundation Data

Global Rice Paddy Inventory (GRPI): A High-Resolution Inventory of Methane Emissions From Rice Agriculture Based on Landsat Satellite Inundation Data

Rice agriculture is a major source of atmospheric methane, but current emission inventories are highly uncertain, mostly due to poor rice-specific inundation data. Inversions of atmospheric methane observations can help to better quantify rice emissions but require high-resolution prior information on the location and timing of emissions. Here we use Landsat satellite data at 30 m resolution to map the global monthly distribution of rice paddy fractional areas on a 0.1° × 0.1° (∼10 × 10 km) grid by optimizing an algorithm for flooded vegetation and combining it with a 30 m global cropland database and rice-specific data. We validate this global rice paddy map with an independent US rice database and with seasonal flux measurements from the FLUXNET CH4 network, estimating errors on rice area fraction of 31% on the 0.1° × 0.1° grid and 10% regionally. We combine the rice paddy map with an extensive global data set of emission factors (EFs) per unit of rice paddy area. The resulting Global Rice Paddy Inventory (GRPI) provides methane emission estimates at 0.1° × 0.1° (∼10 × 10 km) spatial resolution and monthly resolution. Our global emission of 39.3 ± 4.7 Tg a−1 for 2022 (best estimate and error standard deviation) is higher than previous inventories that use outdated rice maps and IPCC-recommended EFs now considered to be too low. China is the largest rice emitter in GRPI (8.2 ± 1.0 Tg a−1), followed by India (6.5 ± 1.0 Tg a−1), Bangladesh (5.7 ± 1.2 Tg a−1), Vietnam (5.7 ± 1.0 Tg a−1), and Thailand (4.4 ± 0.9 Tg a−1). These five countries together account for 78% of global total rice emissions. Seasonality of emissions varies considerably between and within individual countries reflecting differences in climate and crop practices. We define a rice methane intensity (methane emission per unit of rice produced) to assess the potential of mitigating methane emission without compromising food security. We find national methane intensities ranging from 10 to 120 kg methane per ton of rice produced (global mean 51) for major rice-growing countries. Countries can achieve low intensities with high-yield cultivars, upland rice agriculture, water management, and organic matter management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信