Ti和B4C粉末粒度对(TiC + TiB)/Ti钛基复合材料力学性能和热性能的影响

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hengpei Pan, Yali Xu, Ke Wang, Xuefeng Cao, Weimin Hu, Xinyao Zhang
{"title":"Ti和B4C粉末粒度对(TiC + TiB)/Ti钛基复合材料力学性能和热性能的影响","authors":"Hengpei Pan,&nbsp;Yali Xu,&nbsp;Ke Wang,&nbsp;Xuefeng Cao,&nbsp;Weimin Hu,&nbsp;Xinyao Zhang","doi":"10.1007/s10853-025-10851-4","DOIUrl":null,"url":null,"abstract":"<div><p>Four titanium matrix composites made of pure Ti (10–53 μm and 53–150 μm) and two raw B<sub>4</sub>C powders (50 nm and 1 μm) were synthesized by powder metallurgical method. The microstructure, mechanical, and thermal properties of the composites were investigated. The microstructures of composites made from 10 to 53 μm Ti powders are nearly uniform, while those made from 53 to 150 μm Ti particles show typical network architectures. The lengths and aspect ratios of the reinforcements increased as raw B<sub>4</sub>C particles increased. The combination of fine Ti and nano-sized raw B<sub>4</sub>C particles possessed the highest yield strength of 636.3 ± 2.5 MPa, while the combination of coarse Ti and micro-sized B<sub>4</sub>C particles led to a yield strength of 602.3 ± 0.9 MPa. The formation of network microstructure improved thermal conductivity through the increase of phonon mean free paths and effective heat transfer channels.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 15","pages":"6530 - 6550"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of Ti and B4C powder sizes on the mechanical and thermal properties of (TiC + TiB)/Ti titanium matrix composites\",\"authors\":\"Hengpei Pan,&nbsp;Yali Xu,&nbsp;Ke Wang,&nbsp;Xuefeng Cao,&nbsp;Weimin Hu,&nbsp;Xinyao Zhang\",\"doi\":\"10.1007/s10853-025-10851-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Four titanium matrix composites made of pure Ti (10–53 μm and 53–150 μm) and two raw B<sub>4</sub>C powders (50 nm and 1 μm) were synthesized by powder metallurgical method. The microstructure, mechanical, and thermal properties of the composites were investigated. The microstructures of composites made from 10 to 53 μm Ti powders are nearly uniform, while those made from 53 to 150 μm Ti particles show typical network architectures. The lengths and aspect ratios of the reinforcements increased as raw B<sub>4</sub>C particles increased. The combination of fine Ti and nano-sized raw B<sub>4</sub>C particles possessed the highest yield strength of 636.3 ± 2.5 MPa, while the combination of coarse Ti and micro-sized B<sub>4</sub>C particles led to a yield strength of 602.3 ± 0.9 MPa. The formation of network microstructure improved thermal conductivity through the increase of phonon mean free paths and effective heat transfer channels.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 15\",\"pages\":\"6530 - 6550\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10851-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10851-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用粉末冶金法合成了纯Ti (10-53 μm和53-150 μm)和两种原料B4C粉末(50 nm和1 μm)的4种钛基复合材料。研究了复合材料的显微组织、力学性能和热性能。10 ~ 53 μm Ti粉制备的复合材料微观结构基本均匀,而53 ~ 150 μm Ti粉制备的复合材料微观结构呈典型的网状结构。增强材料的长度和长径比随着B4C颗粒的增加而增加。细Ti与纳米级B4C颗粒组合的屈服强度最高,为636.3±2.5 MPa,粗Ti与微级B4C颗粒组合的屈服强度为602.3±0.9 MPa。网状结构的形成通过增加声子平均自由程和有效传热通道来改善导热性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of Ti and B4C powder sizes on the mechanical and thermal properties of (TiC + TiB)/Ti titanium matrix composites

Four titanium matrix composites made of pure Ti (10–53 μm and 53–150 μm) and two raw B4C powders (50 nm and 1 μm) were synthesized by powder metallurgical method. The microstructure, mechanical, and thermal properties of the composites were investigated. The microstructures of composites made from 10 to 53 μm Ti powders are nearly uniform, while those made from 53 to 150 μm Ti particles show typical network architectures. The lengths and aspect ratios of the reinforcements increased as raw B4C particles increased. The combination of fine Ti and nano-sized raw B4C particles possessed the highest yield strength of 636.3 ± 2.5 MPa, while the combination of coarse Ti and micro-sized B4C particles led to a yield strength of 602.3 ± 0.9 MPa. The formation of network microstructure improved thermal conductivity through the increase of phonon mean free paths and effective heat transfer channels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信