{"title":"开放量子电池在BTZ时空中的耗散动力学","authors":"Zehua Tian, Xiaobao Liu, Jieci Wang, Jiliang Jing","doi":"10.1007/JHEP04(2025)188","DOIUrl":null,"url":null,"abstract":"<p>We consider how charging performances of a quantum battery, modeled as a two-level system, are influenced by the presence of vacuum fluctuations of a quantum field satisfying the Dirichlet, transparent, and Neumann boundary conditions in the BTZ spacetime. The quantum battery is subjected to an external static driving which works as a charger. Meanwhile, the quantum field is assumed to be coupled to both longitudinal and transverse spin components of the quantum battery including decoherence and pure dephasing mechanisms. Charging and discharging dynamics of the quantum battery are derived by extending the previous open quantum system approach in the relativistic framework to this more general scenario including both the driving and multiple coupling. Analytic expressions for the time evolution of the energy stored are presented. We find that when the driving amplitude is stronger/weaker than the energy-level spacing of the quantum battery the pure dephasing dissipative coupling results in better/worse charging performances than the decoherence dissipative coupling case. We also find that higher local Hawking temperature helps to improve the charging performance under certain conditions compared with the closed quantum battery case, implying the feasibility of energy extraction from vacuum fluctuations in curved spacetime via dissipation in charging protocol. Different boundary conditions for quantum field may lead to different charging performance. Furthermore, we also address the charging stability by monitoring the energy behaviour after the charging protocol has been switched off. Our study presents a general framework to investigate relaxation effects in curved spacetime, and reveals how spacetime properties and field boundary condition affect the charging process, which in turn may shed light on the exploration of the spacetime properties and thermodynamics via the charging protocol.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)188.pdf","citationCount":"0","resultStr":"{\"title\":\"Dissipative dynamics of an open quantum battery in the BTZ spacetime\",\"authors\":\"Zehua Tian, Xiaobao Liu, Jieci Wang, Jiliang Jing\",\"doi\":\"10.1007/JHEP04(2025)188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider how charging performances of a quantum battery, modeled as a two-level system, are influenced by the presence of vacuum fluctuations of a quantum field satisfying the Dirichlet, transparent, and Neumann boundary conditions in the BTZ spacetime. The quantum battery is subjected to an external static driving which works as a charger. Meanwhile, the quantum field is assumed to be coupled to both longitudinal and transverse spin components of the quantum battery including decoherence and pure dephasing mechanisms. Charging and discharging dynamics of the quantum battery are derived by extending the previous open quantum system approach in the relativistic framework to this more general scenario including both the driving and multiple coupling. Analytic expressions for the time evolution of the energy stored are presented. We find that when the driving amplitude is stronger/weaker than the energy-level spacing of the quantum battery the pure dephasing dissipative coupling results in better/worse charging performances than the decoherence dissipative coupling case. We also find that higher local Hawking temperature helps to improve the charging performance under certain conditions compared with the closed quantum battery case, implying the feasibility of energy extraction from vacuum fluctuations in curved spacetime via dissipation in charging protocol. Different boundary conditions for quantum field may lead to different charging performance. Furthermore, we also address the charging stability by monitoring the energy behaviour after the charging protocol has been switched off. Our study presents a general framework to investigate relaxation effects in curved spacetime, and reveals how spacetime properties and field boundary condition affect the charging process, which in turn may shed light on the exploration of the spacetime properties and thermodynamics via the charging protocol.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)188.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)188\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)188","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Dissipative dynamics of an open quantum battery in the BTZ spacetime
We consider how charging performances of a quantum battery, modeled as a two-level system, are influenced by the presence of vacuum fluctuations of a quantum field satisfying the Dirichlet, transparent, and Neumann boundary conditions in the BTZ spacetime. The quantum battery is subjected to an external static driving which works as a charger. Meanwhile, the quantum field is assumed to be coupled to both longitudinal and transverse spin components of the quantum battery including decoherence and pure dephasing mechanisms. Charging and discharging dynamics of the quantum battery are derived by extending the previous open quantum system approach in the relativistic framework to this more general scenario including both the driving and multiple coupling. Analytic expressions for the time evolution of the energy stored are presented. We find that when the driving amplitude is stronger/weaker than the energy-level spacing of the quantum battery the pure dephasing dissipative coupling results in better/worse charging performances than the decoherence dissipative coupling case. We also find that higher local Hawking temperature helps to improve the charging performance under certain conditions compared with the closed quantum battery case, implying the feasibility of energy extraction from vacuum fluctuations in curved spacetime via dissipation in charging protocol. Different boundary conditions for quantum field may lead to different charging performance. Furthermore, we also address the charging stability by monitoring the energy behaviour after the charging protocol has been switched off. Our study presents a general framework to investigate relaxation effects in curved spacetime, and reveals how spacetime properties and field boundary condition affect the charging process, which in turn may shed light on the exploration of the spacetime properties and thermodynamics via the charging protocol.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).