温度和压力对Mg3Sb2晶格热导率影响的神经网络电位模型分子动力学研究

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiaojiao Cheng, Cunjie Duan, Yunzhen Du, Jizheng Duan, Meiling Qi, Yanwei Chen, Lei Yang, Wenshan Duan, Sheng Zhang, Ping Lin
{"title":"温度和压力对Mg3Sb2晶格热导率影响的神经网络电位模型分子动力学研究","authors":"Jiaojiao Cheng,&nbsp;Cunjie Duan,&nbsp;Yunzhen Du,&nbsp;Jizheng Duan,&nbsp;Meiling Qi,&nbsp;Yanwei Chen,&nbsp;Lei Yang,&nbsp;Wenshan Duan,&nbsp;Sheng Zhang,&nbsp;Ping Lin","doi":"10.1007/s10853-025-10755-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the thermal transport and mechanical properties of Mg<sub>3</sub>Sb<sub>2</sub>, through molecular dynamics (MD) simulations with a neural network potential (NNP) model constructed by machine learning. The model’s computational results align closely with experimental data and Density Functional Theory (DFT) analyses. Mg<sub>3</sub>Sb<sub>2</sub> exhibits nearly isotropic thermal conductivity, which decreases with increasing temperature, in line with typical phonon scattering behavior. Additionally, the study explores the effects of pressure on thermal conductivity and structural parameters, revealing that as pressure increases, the volume of the material decreases, leading to directional variations in thermal conductivity. The findings demonstrate the reliability and accuracy of the NNP in predicting material performance.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 15","pages":"6551 - 6564"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network potential model molecular dynamics study on the effect of temperature and pressure on the lattice thermal conductivity of Mg3Sb2\",\"authors\":\"Jiaojiao Cheng,&nbsp;Cunjie Duan,&nbsp;Yunzhen Du,&nbsp;Jizheng Duan,&nbsp;Meiling Qi,&nbsp;Yanwei Chen,&nbsp;Lei Yang,&nbsp;Wenshan Duan,&nbsp;Sheng Zhang,&nbsp;Ping Lin\",\"doi\":\"10.1007/s10853-025-10755-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the thermal transport and mechanical properties of Mg<sub>3</sub>Sb<sub>2</sub>, through molecular dynamics (MD) simulations with a neural network potential (NNP) model constructed by machine learning. The model’s computational results align closely with experimental data and Density Functional Theory (DFT) analyses. Mg<sub>3</sub>Sb<sub>2</sub> exhibits nearly isotropic thermal conductivity, which decreases with increasing temperature, in line with typical phonon scattering behavior. Additionally, the study explores the effects of pressure on thermal conductivity and structural parameters, revealing that as pressure increases, the volume of the material decreases, leading to directional variations in thermal conductivity. The findings demonstrate the reliability and accuracy of the NNP in predicting material performance.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 15\",\"pages\":\"6551 - 6564\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10755-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10755-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用基于机器学习的神经网络电位(NNP)模型,通过分子动力学(MD)模拟研究了Mg3Sb2的热输运和力学性能。该模型的计算结果与实验数据和密度泛函理论(DFT)分析结果一致。Mg3Sb2表现出接近各向同性的导热系数,随温度升高而降低,符合典型的声子散射行为。此外,该研究还探讨了压力对导热系数和结构参数的影响,发现随着压力的增加,材料的体积减小,从而导致导热系数的方向性变化。研究结果证明了NNP在预测材料性能方面的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network potential model molecular dynamics study on the effect of temperature and pressure on the lattice thermal conductivity of Mg3Sb2

This study investigates the thermal transport and mechanical properties of Mg3Sb2, through molecular dynamics (MD) simulations with a neural network potential (NNP) model constructed by machine learning. The model’s computational results align closely with experimental data and Density Functional Theory (DFT) analyses. Mg3Sb2 exhibits nearly isotropic thermal conductivity, which decreases with increasing temperature, in line with typical phonon scattering behavior. Additionally, the study explores the effects of pressure on thermal conductivity and structural parameters, revealing that as pressure increases, the volume of the material decreases, leading to directional variations in thermal conductivity. The findings demonstrate the reliability and accuracy of the NNP in predicting material performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信