Sachin Sharma Ashok Kumar, Khishn K. Kandiah, K. H. Loh, J. Liew, Z. L. Goh, K. Ramesh, S. Ramesh, S. Ramesh, S. K. Tiong
{"title":"综述:石墨烯基纳米材料用于海水淡化和水净化膜的革命性解决方案及其应用","authors":"Sachin Sharma Ashok Kumar, Khishn K. Kandiah, K. H. Loh, J. Liew, Z. L. Goh, K. Ramesh, S. Ramesh, S. Ramesh, S. K. Tiong","doi":"10.1007/s10853-025-10813-w","DOIUrl":null,"url":null,"abstract":"<div><p>The global challenges of the pollution in aquatic environments and water scarcity have been rapidly addressed via the application of membrane-based separations for water desalination and purification because of its advantages of easy scale-up, easy operation, environmental friendliness and energy efficiency, respectively. Lately, the new generation two-dimensional (2D) graphene and its nanomaterials including aquaporin, carbon nanotubes and zeolites have exhibited great potential for desalination and membrane-based separation fields due to its fascinating features such as large specific surface area, rich modification approaches, single atomic layer structure, nanosized pores, hydrophobic nature, high strength and durability as well as high thermal and electrical characteristics, respectively. Furthermore, an insight on the current research on graphene and its nanomaterials has been described along with its significance as promising nanomaterials in the desalination processes. This review article firstly introduces the history for desalination processes and its properties of interest. Secondly, the recent advancements of incorporating these nanomaterials in desalination processes such as reverse osmosis, forward osmosis, pervaporation, membrane distillation, etc., will be discussed. The challenges and future prospectives of these functional materials have also been described. In overall, these nanomaterials as enhancers have contributed significantly to the desalination technology since they have shown multiple functionalities with enhanced water transport properties. Finally, with respect to the fascinating features of these nanomaterials, we believe that the graphene and its nanomaterials still have a great research value and could potentially revolutionize desalination and the membrane separation technology.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 15","pages":"6454 - 6476"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review: the revolutionary solutions of graphene-based nanomaterials for desalination and water purification membranes and its applications\",\"authors\":\"Sachin Sharma Ashok Kumar, Khishn K. Kandiah, K. H. Loh, J. Liew, Z. L. Goh, K. Ramesh, S. Ramesh, S. Ramesh, S. K. Tiong\",\"doi\":\"10.1007/s10853-025-10813-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The global challenges of the pollution in aquatic environments and water scarcity have been rapidly addressed via the application of membrane-based separations for water desalination and purification because of its advantages of easy scale-up, easy operation, environmental friendliness and energy efficiency, respectively. Lately, the new generation two-dimensional (2D) graphene and its nanomaterials including aquaporin, carbon nanotubes and zeolites have exhibited great potential for desalination and membrane-based separation fields due to its fascinating features such as large specific surface area, rich modification approaches, single atomic layer structure, nanosized pores, hydrophobic nature, high strength and durability as well as high thermal and electrical characteristics, respectively. Furthermore, an insight on the current research on graphene and its nanomaterials has been described along with its significance as promising nanomaterials in the desalination processes. This review article firstly introduces the history for desalination processes and its properties of interest. Secondly, the recent advancements of incorporating these nanomaterials in desalination processes such as reverse osmosis, forward osmosis, pervaporation, membrane distillation, etc., will be discussed. The challenges and future prospectives of these functional materials have also been described. In overall, these nanomaterials as enhancers have contributed significantly to the desalination technology since they have shown multiple functionalities with enhanced water transport properties. Finally, with respect to the fascinating features of these nanomaterials, we believe that the graphene and its nanomaterials still have a great research value and could potentially revolutionize desalination and the membrane separation technology.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 15\",\"pages\":\"6454 - 6476\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10813-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10813-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Review: the revolutionary solutions of graphene-based nanomaterials for desalination and water purification membranes and its applications
The global challenges of the pollution in aquatic environments and water scarcity have been rapidly addressed via the application of membrane-based separations for water desalination and purification because of its advantages of easy scale-up, easy operation, environmental friendliness and energy efficiency, respectively. Lately, the new generation two-dimensional (2D) graphene and its nanomaterials including aquaporin, carbon nanotubes and zeolites have exhibited great potential for desalination and membrane-based separation fields due to its fascinating features such as large specific surface area, rich modification approaches, single atomic layer structure, nanosized pores, hydrophobic nature, high strength and durability as well as high thermal and electrical characteristics, respectively. Furthermore, an insight on the current research on graphene and its nanomaterials has been described along with its significance as promising nanomaterials in the desalination processes. This review article firstly introduces the history for desalination processes and its properties of interest. Secondly, the recent advancements of incorporating these nanomaterials in desalination processes such as reverse osmosis, forward osmosis, pervaporation, membrane distillation, etc., will be discussed. The challenges and future prospectives of these functional materials have also been described. In overall, these nanomaterials as enhancers have contributed significantly to the desalination technology since they have shown multiple functionalities with enhanced water transport properties. Finally, with respect to the fascinating features of these nanomaterials, we believe that the graphene and its nanomaterials still have a great research value and could potentially revolutionize desalination and the membrane separation technology.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.