Asher Berlin, Surjeet Rajendran, Harikrishnan Ramani, Erwin H. Tanin
{"title":"带电辐射的直接偏转","authors":"Asher Berlin, Surjeet Rajendran, Harikrishnan Ramani, Erwin H. Tanin","doi":"10.1007/JHEP04(2025)198","DOIUrl":null,"url":null,"abstract":"<p>Millicharged particles are generic in theories of dark sectors. A cosmic or local abundance of them may be produced by the early universe, stellar environments, or the decay or annihilation of dark matter/dark energy. Furthermore, if such particles are light, these production channels result in a background of millicharged radiation. We show that light-shining-through-wall experiments employing superconducting RF cavities can also be used as “direct deflection” experiments to search for this relativistic background. The millicharged plasma is first subjected to an oscillating electromagnetic field of a driven cavity, which causes charge separation in the form of charge and current perturbations. In turn, these perturbations can propagate outwards and resonantly excite electromagnetic fields in a well-shielded cavity placed nearby, enabling detection. We estimate that future versions of the existing Dark SRF experiment can probe orders of magnitude of currently unexplored parameter space, including millicharges produced from the Sun, the cosmic neutrino background, or other mechanisms that generate a thermal abundance with energy density as small as ~ 10<sup>−4</sup> that of the cosmic microwave background.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)198.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct deflection of Millicharged radiation\",\"authors\":\"Asher Berlin, Surjeet Rajendran, Harikrishnan Ramani, Erwin H. Tanin\",\"doi\":\"10.1007/JHEP04(2025)198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Millicharged particles are generic in theories of dark sectors. A cosmic or local abundance of them may be produced by the early universe, stellar environments, or the decay or annihilation of dark matter/dark energy. Furthermore, if such particles are light, these production channels result in a background of millicharged radiation. We show that light-shining-through-wall experiments employing superconducting RF cavities can also be used as “direct deflection” experiments to search for this relativistic background. The millicharged plasma is first subjected to an oscillating electromagnetic field of a driven cavity, which causes charge separation in the form of charge and current perturbations. In turn, these perturbations can propagate outwards and resonantly excite electromagnetic fields in a well-shielded cavity placed nearby, enabling detection. We estimate that future versions of the existing Dark SRF experiment can probe orders of magnitude of currently unexplored parameter space, including millicharges produced from the Sun, the cosmic neutrino background, or other mechanisms that generate a thermal abundance with energy density as small as ~ 10<sup>−4</sup> that of the cosmic microwave background.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)198.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP04(2025)198\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)198","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Millicharged particles are generic in theories of dark sectors. A cosmic or local abundance of them may be produced by the early universe, stellar environments, or the decay or annihilation of dark matter/dark energy. Furthermore, if such particles are light, these production channels result in a background of millicharged radiation. We show that light-shining-through-wall experiments employing superconducting RF cavities can also be used as “direct deflection” experiments to search for this relativistic background. The millicharged plasma is first subjected to an oscillating electromagnetic field of a driven cavity, which causes charge separation in the form of charge and current perturbations. In turn, these perturbations can propagate outwards and resonantly excite electromagnetic fields in a well-shielded cavity placed nearby, enabling detection. We estimate that future versions of the existing Dark SRF experiment can probe orders of magnitude of currently unexplored parameter space, including millicharges produced from the Sun, the cosmic neutrino background, or other mechanisms that generate a thermal abundance with energy density as small as ~ 10−4 that of the cosmic microwave background.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).