原位同步加速器x射线衍射研究直接增材制造17−4 PH钢拉伸变形过程中的结构演变

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. Gatões, P. Freitas Rodrigues, L. M. Cacho, B. Alves, F. M. Braz Fernandes, M. T. Vieira
{"title":"原位同步加速器x射线衍射研究直接增材制造17−4 PH钢拉伸变形过程中的结构演变","authors":"D. Gatões,&nbsp;P. Freitas Rodrigues,&nbsp;L. M. Cacho,&nbsp;B. Alves,&nbsp;F. M. Braz Fernandes,&nbsp;M. T. Vieira","doi":"10.1007/s12540-024-01825-3","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing (AM) technologies are revolutionising the production of complex and customised components. Despite these geometric innovations, the microstructure of these ‘new’ materials has posed a major obstacle to the widespread adoption of these technologies in novel applications. However, understanding the microstructural evolution during mechanical loading is necessary to elucidate the mechanisms and implications of using AM 3D objects in critical applications. This study uses in-situ synchrotron X-ray diffraction (XRD) during tensile testing to clarify the deformation mechanisms and microstructural transformations in additively manufactured 17 − 4 PH stainless steel (AISI 630). Controlled tensile loading was applied to the tensile specimens, enabling the simultaneous capture of XRD, thereby providing real-time insights into material response. The analysis highlighted the structural evolution and phase transformations occurring during deformation, providing a deeper understanding of the underlying mechanisms that influence the unique mechanical properties resulting from Laser Powder Bed Fusion (LPBF). The results demonstrate a clear correlation between microstructural attributes and mechanical performance, contributing to optimising the design vs. properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 5","pages":"1369 - 1380"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Synchrotron X-ray Diffraction Study of Structural Evolution during Tensile Deformation of Direct Additive Manufactured 17 − 4 PH Steel\",\"authors\":\"D. Gatões,&nbsp;P. Freitas Rodrigues,&nbsp;L. M. Cacho,&nbsp;B. Alves,&nbsp;F. M. Braz Fernandes,&nbsp;M. T. Vieira\",\"doi\":\"10.1007/s12540-024-01825-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Additive manufacturing (AM) technologies are revolutionising the production of complex and customised components. Despite these geometric innovations, the microstructure of these ‘new’ materials has posed a major obstacle to the widespread adoption of these technologies in novel applications. However, understanding the microstructural evolution during mechanical loading is necessary to elucidate the mechanisms and implications of using AM 3D objects in critical applications. This study uses in-situ synchrotron X-ray diffraction (XRD) during tensile testing to clarify the deformation mechanisms and microstructural transformations in additively manufactured 17 − 4 PH stainless steel (AISI 630). Controlled tensile loading was applied to the tensile specimens, enabling the simultaneous capture of XRD, thereby providing real-time insights into material response. The analysis highlighted the structural evolution and phase transformations occurring during deformation, providing a deeper understanding of the underlying mechanisms that influence the unique mechanical properties resulting from Laser Powder Bed Fusion (LPBF). The results demonstrate a clear correlation between microstructural attributes and mechanical performance, contributing to optimising the design vs. properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"31 5\",\"pages\":\"1369 - 1380\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01825-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01825-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)技术正在彻底改变复杂和定制组件的生产。尽管有这些几何创新,但这些“新”材料的微观结构对这些技术在新应用中的广泛采用构成了主要障碍。然而,了解机械加载过程中的微观结构演变对于阐明在关键应用中使用增材制造3D物体的机制和影响是必要的。本研究利用原位同步x射线衍射(XRD)技术对增材制造的17−4 PH不锈钢(AISI 630)的拉伸变形机理和微观组织转变进行了研究。在拉伸试样上施加可控的拉伸载荷,从而能够同时捕获XRD,从而实时了解材料的响应。该分析强调了变形过程中发生的结构演变和相变,从而更深入地了解了影响激光粉末床熔合(LPBF)产生的独特机械性能的潜在机制。结果表明,微观结构属性与机械性能之间存在明显的相关性,有助于优化设计与性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-Situ Synchrotron X-ray Diffraction Study of Structural Evolution during Tensile Deformation of Direct Additive Manufactured 17 − 4 PH Steel

Additive manufacturing (AM) technologies are revolutionising the production of complex and customised components. Despite these geometric innovations, the microstructure of these ‘new’ materials has posed a major obstacle to the widespread adoption of these technologies in novel applications. However, understanding the microstructural evolution during mechanical loading is necessary to elucidate the mechanisms and implications of using AM 3D objects in critical applications. This study uses in-situ synchrotron X-ray diffraction (XRD) during tensile testing to clarify the deformation mechanisms and microstructural transformations in additively manufactured 17 − 4 PH stainless steel (AISI 630). Controlled tensile loading was applied to the tensile specimens, enabling the simultaneous capture of XRD, thereby providing real-time insights into material response. The analysis highlighted the structural evolution and phase transformations occurring during deformation, providing a deeper understanding of the underlying mechanisms that influence the unique mechanical properties resulting from Laser Powder Bed Fusion (LPBF). The results demonstrate a clear correlation between microstructural attributes and mechanical performance, contributing to optimising the design vs. properties.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信