KOBO挤压后处理SLM AlSi10Mg合金的热稳定性及Ar +离子辐照行为

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Przemysław Snopiński, Krzysztof Matus, Mariusz Król, Tymon Warski, Michal Kotoul, Marek Barlak, Katarzyna Nowakowska-Langier
{"title":"KOBO挤压后处理SLM AlSi10Mg合金的热稳定性及Ar +离子辐照行为","authors":"Przemysław Snopiński,&nbsp;Krzysztof Matus,&nbsp;Mariusz Król,&nbsp;Tymon Warski,&nbsp;Michal Kotoul,&nbsp;Marek Barlak,&nbsp;Katarzyna Nowakowska-Langier","doi":"10.1007/s10973-024-13940-9","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-fine-grained (UFG) and nanotwinned (NT) materials are anticipated to exhibit exceptional resistance to irradiation due to their significant volume fraction of grain boundaries. However, a notable drawback is their susceptibility to grain coarsening at elevated temperatures, which significantly limits their practical application as irradiation-resistant materials, particularly in high-temperature environments. In this study, an AlSi10Mg alloy, prepared using laser powder bed fusion (LPBF), underwent post-processing via the KOBO extrusion method, resulting in an ultra-fine-grained microstructure with an enhanced fraction of coincident site lattice (CSL) twin boundaries. The investigation was conducted in three phases. The first phase involved modelling radiation damage to gain insights into the expected behaviour of the microstructures under irradiation. The second phase included a comprehensive analysis of the microstructures of both as-built and KOBO-processed samples using light, scanning, and transmission electron microscopy. This analysis revealed an ultra-fine-grained microstructure with a mean grain size of approximately 0.8 µm and an increase in the fraction of CSL boundaries from 30% in the as-built state to 42% following KOBO extrusion. In the third phase, the thermal stability of both samples was assessed through annealing experiments conducted for 1 h across a temperature range of 300–500 °C, with 50 °C intervals. To further explore the impact of the nanotwinned microstructure on thermal stability, irradiation experiments were conducted using 60 keV He⁺ ions to a dose of 5 × 10<sup>1</sup>⁷ ions cm⁻<sup>2</sup> at 130 °C. The results indicated an improved irradiation resistance in the KOBO-processed sample, as evidenced by a thinner sponge-like structure formation upon Ar⁺-ion irradiation compared to the as-built counterpart.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 2","pages":"991 - 1012"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal stability and Ar + ion irradiation behaviour of SLM AlSi10Mg alloy post-processed via KOBO extrusion method\",\"authors\":\"Przemysław Snopiński,&nbsp;Krzysztof Matus,&nbsp;Mariusz Król,&nbsp;Tymon Warski,&nbsp;Michal Kotoul,&nbsp;Marek Barlak,&nbsp;Katarzyna Nowakowska-Langier\",\"doi\":\"10.1007/s10973-024-13940-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultra-fine-grained (UFG) and nanotwinned (NT) materials are anticipated to exhibit exceptional resistance to irradiation due to their significant volume fraction of grain boundaries. However, a notable drawback is their susceptibility to grain coarsening at elevated temperatures, which significantly limits their practical application as irradiation-resistant materials, particularly in high-temperature environments. In this study, an AlSi10Mg alloy, prepared using laser powder bed fusion (LPBF), underwent post-processing via the KOBO extrusion method, resulting in an ultra-fine-grained microstructure with an enhanced fraction of coincident site lattice (CSL) twin boundaries. The investigation was conducted in three phases. The first phase involved modelling radiation damage to gain insights into the expected behaviour of the microstructures under irradiation. The second phase included a comprehensive analysis of the microstructures of both as-built and KOBO-processed samples using light, scanning, and transmission electron microscopy. This analysis revealed an ultra-fine-grained microstructure with a mean grain size of approximately 0.8 µm and an increase in the fraction of CSL boundaries from 30% in the as-built state to 42% following KOBO extrusion. In the third phase, the thermal stability of both samples was assessed through annealing experiments conducted for 1 h across a temperature range of 300–500 °C, with 50 °C intervals. To further explore the impact of the nanotwinned microstructure on thermal stability, irradiation experiments were conducted using 60 keV He⁺ ions to a dose of 5 × 10<sup>1</sup>⁷ ions cm⁻<sup>2</sup> at 130 °C. The results indicated an improved irradiation resistance in the KOBO-processed sample, as evidenced by a thinner sponge-like structure formation upon Ar⁺-ion irradiation compared to the as-built counterpart.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"150 2\",\"pages\":\"991 - 1012\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13940-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13940-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

超细晶(UFG)和纳米孪晶(NT)材料由于其显著的晶界体积分数,预计将表现出优异的耐辐照性。然而,它们的一个显著缺点是在高温下晶粒易变粗,这极大地限制了它们作为抗辐照材料的实际应用,特别是在高温环境中。在本研究中,使用激光粉末床熔合(LPBF)制备的AlSi10Mg合金,通过KOBO挤压法进行后处理,得到了超细晶粒的微观组织,并增加了重合点阵(CSL)孪晶界的比例。调查分三个阶段进行。第一阶段涉及模拟辐射损伤,以深入了解辐照下微结构的预期行为。第二阶段包括使用光学、扫描和透射电子显微镜对成品和kobo加工样品的微观结构进行全面分析。分析结果表明,该合金具有平均晶粒尺寸约为0.8µm的超细晶粒组织,并且在KOBO挤压后,CSL晶界的比例从成型状态的30%增加到42%。在第三阶段,通过在300-500°C的温度范围内(间隔50°C)进行1 h的退火实验来评估两种样品的热稳定性。为了进一步探索纳米孪晶微观结构对热稳定性的影响,我们使用60 keV He⁺在130℃下以5 × 101⁷ions cm⁻2的剂量进行了辐照实验。结果表明,kobo处理后的样品具有更好的耐辐照性,与构建的样品相比,Ar +离子辐照后形成的海绵状结构更薄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal stability and Ar + ion irradiation behaviour of SLM AlSi10Mg alloy post-processed via KOBO extrusion method

Ultra-fine-grained (UFG) and nanotwinned (NT) materials are anticipated to exhibit exceptional resistance to irradiation due to their significant volume fraction of grain boundaries. However, a notable drawback is their susceptibility to grain coarsening at elevated temperatures, which significantly limits their practical application as irradiation-resistant materials, particularly in high-temperature environments. In this study, an AlSi10Mg alloy, prepared using laser powder bed fusion (LPBF), underwent post-processing via the KOBO extrusion method, resulting in an ultra-fine-grained microstructure with an enhanced fraction of coincident site lattice (CSL) twin boundaries. The investigation was conducted in three phases. The first phase involved modelling radiation damage to gain insights into the expected behaviour of the microstructures under irradiation. The second phase included a comprehensive analysis of the microstructures of both as-built and KOBO-processed samples using light, scanning, and transmission electron microscopy. This analysis revealed an ultra-fine-grained microstructure with a mean grain size of approximately 0.8 µm and an increase in the fraction of CSL boundaries from 30% in the as-built state to 42% following KOBO extrusion. In the third phase, the thermal stability of both samples was assessed through annealing experiments conducted for 1 h across a temperature range of 300–500 °C, with 50 °C intervals. To further explore the impact of the nanotwinned microstructure on thermal stability, irradiation experiments were conducted using 60 keV He⁺ ions to a dose of 5 × 101⁷ ions cm⁻2 at 130 °C. The results indicated an improved irradiation resistance in the KOBO-processed sample, as evidenced by a thinner sponge-like structure formation upon Ar⁺-ion irradiation compared to the as-built counterpart.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信