La0.3A0.3Sr0.4MnO3 (A = Gd, Tb, Dy, Ho, Er)钙钛矿的显微结构、光学和磁性能

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmad Gholizadeh, Mohsen Choupani
{"title":"La0.3A0.3Sr0.4MnO3 (A = Gd, Tb, Dy, Ho, Er)钙钛矿的显微结构、光学和磁性能","authors":"Ahmad Gholizadeh,&nbsp;Mohsen Choupani","doi":"10.1007/s10854-025-14806-y","DOIUrl":null,"url":null,"abstract":"<div><p>Structural, optical, and magnetic properties of La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> and La<sub>0.3</sub>A<sub>0.3</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> (A = Gd, Tb, Dy, Ho, Er) perovskite nanoparticles synthesized using the sol–gel citrate–nitrate method were investigated. The XRD analysis of La<sub>0.3</sub>A<sub>0.3</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> nanoparticles revealed a structural phase transition from rhombohedral to monoclinic with decreasing ionic radius of the rare earth substitution atoms. Crystallite size, calculated using the Scherrer method, decreased with smaller rare earth ionic radii, highlighting the impact of electronegativity on crystallite size. Raman spectroscopy highlighted structural disorder induced by rare earth doping, while field-emission scanning electron microscopy and EDX confirmed particle size reduction and homogeneous substitution. UV–Vis analysis demonstrated that the rare earth substitution reduces the bandgap of La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> due to lattice distortions. This ability to control and modify the bandgap energy of these materials presents opportunities for designing tailored materials with desired electronic properties for various optoelectronic applications, such as photovoltaics and sensors. Magnetic studies revealed that saturation magnetization and coercivity decreased with substitution, driven by reduced Mn–O–Mn bond angles and increased magnetic dead layer. Smaller A-site ionic radii and particle size contributed to a weaker Mn<sup>3+</sup>–Mn<sup>4+</sup> double exchange, leading to reduced magnetization.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural, optical, and magnetic properties of La0.3A0.3Sr0.4MnO3 (A = Gd, Tb, Dy, Ho, Er) perovskites\",\"authors\":\"Ahmad Gholizadeh,&nbsp;Mohsen Choupani\",\"doi\":\"10.1007/s10854-025-14806-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural, optical, and magnetic properties of La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> and La<sub>0.3</sub>A<sub>0.3</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> (A = Gd, Tb, Dy, Ho, Er) perovskite nanoparticles synthesized using the sol–gel citrate–nitrate method were investigated. The XRD analysis of La<sub>0.3</sub>A<sub>0.3</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> nanoparticles revealed a structural phase transition from rhombohedral to monoclinic with decreasing ionic radius of the rare earth substitution atoms. Crystallite size, calculated using the Scherrer method, decreased with smaller rare earth ionic radii, highlighting the impact of electronegativity on crystallite size. Raman spectroscopy highlighted structural disorder induced by rare earth doping, while field-emission scanning electron microscopy and EDX confirmed particle size reduction and homogeneous substitution. UV–Vis analysis demonstrated that the rare earth substitution reduces the bandgap of La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3</sub> due to lattice distortions. This ability to control and modify the bandgap energy of these materials presents opportunities for designing tailored materials with desired electronic properties for various optoelectronic applications, such as photovoltaics and sensors. Magnetic studies revealed that saturation magnetization and coercivity decreased with substitution, driven by reduced Mn–O–Mn bond angles and increased magnetic dead layer. Smaller A-site ionic radii and particle size contributed to a weaker Mn<sup>3+</sup>–Mn<sup>4+</sup> double exchange, leading to reduced magnetization.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14806-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14806-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了溶胶-凝胶柠檬酸盐-硝酸盐法制备的La0.6Sr0.4MnO3和La0.3A0.3Sr0.4MnO3 (A = Gd, Tb, Dy, Ho, Er)钙钛矿纳米颗粒的结构、光学和磁性能。对La0.3A0.3Sr0.4MnO3纳米粒子的XRD分析表明,随着稀土取代原子离子半径的减小,纳米La0.3A0.3Sr0.4MnO3纳米粒子的结构由菱形向单斜形转变。使用Scherrer方法计算的晶体尺寸随着稀土离子半径的减小而减小,突出了电负性对晶体尺寸的影响。Raman光谱显示稀土掺杂导致结构紊乱,而场发射扫描电镜和EDX则证实了颗粒尺寸减小和均相取代。UV-Vis分析表明,稀土取代使La0.6Sr0.4MnO3的带隙因晶格畸变而减小。这种控制和修改这些材料的带隙能量的能力为设计具有所需电子性能的定制材料提供了机会,这些材料适用于各种光电应用,如光伏和传感器。磁性研究表明,由于Mn-O-Mn键角的减小和磁死层的增加,饱和磁化强度和矫顽力随取代的增加而降低。较小的a位离子半径和粒径导致Mn3+ -Mn4 +双交换较弱,导致磁化强度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural, optical, and magnetic properties of La0.3A0.3Sr0.4MnO3 (A = Gd, Tb, Dy, Ho, Er) perovskites

Structural, optical, and magnetic properties of La0.6Sr0.4MnO3 and La0.3A0.3Sr0.4MnO3 (A = Gd, Tb, Dy, Ho, Er) perovskite nanoparticles synthesized using the sol–gel citrate–nitrate method were investigated. The XRD analysis of La0.3A0.3Sr0.4MnO3 nanoparticles revealed a structural phase transition from rhombohedral to monoclinic with decreasing ionic radius of the rare earth substitution atoms. Crystallite size, calculated using the Scherrer method, decreased with smaller rare earth ionic radii, highlighting the impact of electronegativity on crystallite size. Raman spectroscopy highlighted structural disorder induced by rare earth doping, while field-emission scanning electron microscopy and EDX confirmed particle size reduction and homogeneous substitution. UV–Vis analysis demonstrated that the rare earth substitution reduces the bandgap of La0.6Sr0.4MnO3 due to lattice distortions. This ability to control and modify the bandgap energy of these materials presents opportunities for designing tailored materials with desired electronic properties for various optoelectronic applications, such as photovoltaics and sensors. Magnetic studies revealed that saturation magnetization and coercivity decreased with substitution, driven by reduced Mn–O–Mn bond angles and increased magnetic dead layer. Smaller A-site ionic radii and particle size contributed to a weaker Mn3+–Mn4+ double exchange, leading to reduced magnetization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信