Yuzhou Dai;Wei Zhang;Lin Shi;Qitao Li;Zhuolun Wu;Yanyan Liu
{"title":"一种用于二维DWT高吞吐量计算的面积高效VLSI架构","authors":"Yuzhou Dai;Wei Zhang;Lin Shi;Qitao Li;Zhuolun Wu;Yanyan Liu","doi":"10.1109/TVLSI.2025.3529690","DOIUrl":null,"url":null,"abstract":"In this article, an area-efficient VLSI architecture scheme for high-throughput computation of the 2-D discrete wavelet transform (DWT) is proposed, effectively applied in the context of aircraft cargo hold scenes. The proposed architecture aims to reduce computation and storage resources while maintaining the DWT-IDWT reconstructed image quality for the 9/7 discrete wavelet. The hardware implementation formulae based on the flipping architecture have been modified to reduce RAM storage bit width. By transforming the coefficients of the formula into hardware-friendly values, the required multiplication operations are split into two stages of addition. On this basis, a pipelined architecture is constructed to set the critical path delay (CPD) of the architecture to be close to the delay of a single adder, <inline-formula> <tex-math>$T_{a}$ </tex-math></inline-formula>, thereby achieving a high throughput. Compared to existing architectures in the research field, the proposed single-level 2-D DWT architecture achieves resource savings on the field-programmable gate array (FPGA) platform while ensuring good image reconstruction quality. The advantages of the multilevel 2-D DWT are even more pronounced. In the simulation results on the application-specific integrated circuit (ASIC) platform, the proposed architecture reduces computation time by at least 35.54% while achieving a higher level of decomposition, decreases the area-delay product (ADP) by at least 25.41%, and saves a significant amount of energy per image (EPI). Furthermore, the proposed folded architecture achieves close to 100% hardware utilization efficiency (HUE) in multilevel 2-D DWT computations.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 5","pages":"1292-1303"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Area-Efficient VLSI Architecture for High-Throughput Computation of the 2-D DWT\",\"authors\":\"Yuzhou Dai;Wei Zhang;Lin Shi;Qitao Li;Zhuolun Wu;Yanyan Liu\",\"doi\":\"10.1109/TVLSI.2025.3529690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an area-efficient VLSI architecture scheme for high-throughput computation of the 2-D discrete wavelet transform (DWT) is proposed, effectively applied in the context of aircraft cargo hold scenes. The proposed architecture aims to reduce computation and storage resources while maintaining the DWT-IDWT reconstructed image quality for the 9/7 discrete wavelet. The hardware implementation formulae based on the flipping architecture have been modified to reduce RAM storage bit width. By transforming the coefficients of the formula into hardware-friendly values, the required multiplication operations are split into two stages of addition. On this basis, a pipelined architecture is constructed to set the critical path delay (CPD) of the architecture to be close to the delay of a single adder, <inline-formula> <tex-math>$T_{a}$ </tex-math></inline-formula>, thereby achieving a high throughput. Compared to existing architectures in the research field, the proposed single-level 2-D DWT architecture achieves resource savings on the field-programmable gate array (FPGA) platform while ensuring good image reconstruction quality. The advantages of the multilevel 2-D DWT are even more pronounced. In the simulation results on the application-specific integrated circuit (ASIC) platform, the proposed architecture reduces computation time by at least 35.54% while achieving a higher level of decomposition, decreases the area-delay product (ADP) by at least 25.41%, and saves a significant amount of energy per image (EPI). Furthermore, the proposed folded architecture achieves close to 100% hardware utilization efficiency (HUE) in multilevel 2-D DWT computations.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 5\",\"pages\":\"1292-1303\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10855161/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855161/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An Area-Efficient VLSI Architecture for High-Throughput Computation of the 2-D DWT
In this article, an area-efficient VLSI architecture scheme for high-throughput computation of the 2-D discrete wavelet transform (DWT) is proposed, effectively applied in the context of aircraft cargo hold scenes. The proposed architecture aims to reduce computation and storage resources while maintaining the DWT-IDWT reconstructed image quality for the 9/7 discrete wavelet. The hardware implementation formulae based on the flipping architecture have been modified to reduce RAM storage bit width. By transforming the coefficients of the formula into hardware-friendly values, the required multiplication operations are split into two stages of addition. On this basis, a pipelined architecture is constructed to set the critical path delay (CPD) of the architecture to be close to the delay of a single adder, $T_{a}$ , thereby achieving a high throughput. Compared to existing architectures in the research field, the proposed single-level 2-D DWT architecture achieves resource savings on the field-programmable gate array (FPGA) platform while ensuring good image reconstruction quality. The advantages of the multilevel 2-D DWT are even more pronounced. In the simulation results on the application-specific integrated circuit (ASIC) platform, the proposed architecture reduces computation time by at least 35.54% while achieving a higher level of decomposition, decreases the area-delay product (ADP) by at least 25.41%, and saves a significant amount of energy per image (EPI). Furthermore, the proposed folded architecture achieves close to 100% hardware utilization efficiency (HUE) in multilevel 2-D DWT computations.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.