{"title":"单边图的零误差容量","authors":"Qi Cao;Qi Chen;Baoming Bai","doi":"10.1109/TIT.2025.3547929","DOIUrl":null,"url":null,"abstract":"In this paper, we study the zero-error capacity of channels with memory, which are represented by graphs. We provide a method to construct code for any graph with one edge, thereby determining a lower bound on its zero-error capacity. Moreover, this code can achieve zero-error capacity when the symbols in a vertex with degree one are the same. We further apply our method to the one-edge graphs representing the binary channels with two memories. There are 28 possible graphs, which can be organized into 11 categories based on their symmetries. The code constructed by our method is proved to achieve the zero-error capacity for all these graphs except for the two graphs in Case 11.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3350-3359"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Zero-Error Capacity of Graphs With One Edge\",\"authors\":\"Qi Cao;Qi Chen;Baoming Bai\",\"doi\":\"10.1109/TIT.2025.3547929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the zero-error capacity of channels with memory, which are represented by graphs. We provide a method to construct code for any graph with one edge, thereby determining a lower bound on its zero-error capacity. Moreover, this code can achieve zero-error capacity when the symbols in a vertex with degree one are the same. We further apply our method to the one-edge graphs representing the binary channels with two memories. There are 28 possible graphs, which can be organized into 11 categories based on their symmetries. The code constructed by our method is proved to achieve the zero-error capacity for all these graphs except for the two graphs in Case 11.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3350-3359\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10923668/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10923668/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
In this paper, we study the zero-error capacity of channels with memory, which are represented by graphs. We provide a method to construct code for any graph with one edge, thereby determining a lower bound on its zero-error capacity. Moreover, this code can achieve zero-error capacity when the symbols in a vertex with degree one are the same. We further apply our method to the one-edge graphs representing the binary channels with two memories. There are 28 possible graphs, which can be organized into 11 categories based on their symmetries. The code constructed by our method is proved to achieve the zero-error capacity for all these graphs except for the two graphs in Case 11.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.