离散无记忆信源中定长有损编码最优误差指数函数的计算

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yutaka Jitsumatsu
{"title":"离散无记忆信源中定长有损编码最优误差指数函数的计算","authors":"Yutaka Jitsumatsu","doi":"10.1109/TIT.2025.3547033","DOIUrl":null,"url":null,"abstract":"Marton’s optimal error exponent for the lossy source coding problem is defined as a non-convex optimization problem. This fact had prevented us to develop an efficient algorithm to compute it. This problem is caused by the fact that the rate-distortion function <inline-formula> <tex-math>$R(\\Delta |P)$ </tex-math></inline-formula> is potentially non-concave in the probability distribution P for a fixed distortion level <inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>. The main contribution of this paper is the development of a parametric expression that is in perfect agreement with the inverse function of the Marton exponent. This representation has two layers. The inner layer is convex optimization and can be computed efficiently. The outer layer, on the other hand, is a non-convex optimization with respect to two parameters. We give a method for computing the Marton exponent based on this representation.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3360-3372"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908925","citationCount":"0","resultStr":"{\"title\":\"Computation of the Optimal Error Exponent Function for Fixed-Length Lossy Source Coding in Discrete Memoryless Sources\",\"authors\":\"Yutaka Jitsumatsu\",\"doi\":\"10.1109/TIT.2025.3547033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marton’s optimal error exponent for the lossy source coding problem is defined as a non-convex optimization problem. This fact had prevented us to develop an efficient algorithm to compute it. This problem is caused by the fact that the rate-distortion function <inline-formula> <tex-math>$R(\\\\Delta |P)$ </tex-math></inline-formula> is potentially non-concave in the probability distribution P for a fixed distortion level <inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>. The main contribution of this paper is the development of a parametric expression that is in perfect agreement with the inverse function of the Marton exponent. This representation has two layers. The inner layer is convex optimization and can be computed efficiently. The outer layer, on the other hand, is a non-convex optimization with respect to two parameters. We give a method for computing the Marton exponent based on this representation.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3360-3372\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908925\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908925/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908925/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

将有耗源编码问题的马尔顿最优误差指数定义为非凸优化问题。这一事实阻碍了我们开发一种有效的算法来计算它。这个问题是由这样一个事实引起的,即对于固定的失真水平$\Delta $,速率失真函数$R(\Delta |P)$在概率分布P中可能是非凹的。本文的主要贡献是发展了一个与马顿指数反函数完全一致的参数表达式。这种表示有两层。内层为凸优化,计算效率高。另一方面,外层是关于两个参数的非凸优化。在此基础上给出了一种计算马尔顿指数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of the Optimal Error Exponent Function for Fixed-Length Lossy Source Coding in Discrete Memoryless Sources
Marton’s optimal error exponent for the lossy source coding problem is defined as a non-convex optimization problem. This fact had prevented us to develop an efficient algorithm to compute it. This problem is caused by the fact that the rate-distortion function $R(\Delta |P)$ is potentially non-concave in the probability distribution P for a fixed distortion level $\Delta $ . The main contribution of this paper is the development of a parametric expression that is in perfect agreement with the inverse function of the Marton exponent. This representation has two layers. The inner layer is convex optimization and can be computed efficiently. The outer layer, on the other hand, is a non-convex optimization with respect to two parameters. We give a method for computing the Marton exponent based on this representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信