航空雷达高度计对5G c波段干扰的评估与抑制方法

Aisha Elsayem;Ali Massoud;Haidy Elghamrawy;Aboelmagd Noureldin
{"title":"航空雷达高度计对5G c波段干扰的评估与抑制方法","authors":"Aisha Elsayem;Ali Massoud;Haidy Elghamrawy;Aboelmagd Noureldin","doi":"10.1109/TRS.2025.3557219","DOIUrl":null,"url":null,"abstract":"The recent deployment of 5G technology in the C band has raised concerns regarding potential interference with aeronautical radar altimeters. The 5G systems in the C band operate within a frequency range of 3.7–3.98 GHz, which closely aligns with the operational frequency of radar altimeters, falling within the range of 4.2–4.4 GHz. This proximity in operational frequencies increases the possibility of interference between the two systems. In this article, we explore two primary objectives: first, to examine the potential for interference between the 5G C band and radar altimeters, and second, to develop techniques for mitigating this interference. To achieve these objectives, we assess interference in a real-world scenario, where multiple base stations (BSs) are deployed to serve an operational runway. In addition, two interference management techniques were proposed and evaluated within the assessed real-life scenario. The first involves the implementation of adaptive BS using the power control (PC) method, which aims to mitigate interference with minimal impact on coverage by adjusting the transmitting power for the BS that contributes the most to the interference model. A modification to this technique was applied to loop over the coverage areas instead of individual BSs. This technique is useful in scenarios, where BSs are implemented close to each other with overlapping coverage. Finally, a sequential quadratic programming (SQP) optimization algorithm was developed to optimize the locations of BSs, minimizing interference while maintaining coverage. This work has explored the impact of potential interference between 5G in the C band and radar altimeters and suggested practical methods to allow the coexistence of both systems, thereby ensuring aviation safety and fulfilling the telecommunication sector’s objectives.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"615-629"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment and Mitigation Approaches of 5G C-Band Interference With Aeronautical Radar Altimeter\",\"authors\":\"Aisha Elsayem;Ali Massoud;Haidy Elghamrawy;Aboelmagd Noureldin\",\"doi\":\"10.1109/TRS.2025.3557219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent deployment of 5G technology in the C band has raised concerns regarding potential interference with aeronautical radar altimeters. The 5G systems in the C band operate within a frequency range of 3.7–3.98 GHz, which closely aligns with the operational frequency of radar altimeters, falling within the range of 4.2–4.4 GHz. This proximity in operational frequencies increases the possibility of interference between the two systems. In this article, we explore two primary objectives: first, to examine the potential for interference between the 5G C band and radar altimeters, and second, to develop techniques for mitigating this interference. To achieve these objectives, we assess interference in a real-world scenario, where multiple base stations (BSs) are deployed to serve an operational runway. In addition, two interference management techniques were proposed and evaluated within the assessed real-life scenario. The first involves the implementation of adaptive BS using the power control (PC) method, which aims to mitigate interference with minimal impact on coverage by adjusting the transmitting power for the BS that contributes the most to the interference model. A modification to this technique was applied to loop over the coverage areas instead of individual BSs. This technique is useful in scenarios, where BSs are implemented close to each other with overlapping coverage. Finally, a sequential quadratic programming (SQP) optimization algorithm was developed to optimize the locations of BSs, minimizing interference while maintaining coverage. This work has explored the impact of potential interference between 5G in the C band and radar altimeters and suggested practical methods to allow the coexistence of both systems, thereby ensuring aviation safety and fulfilling the telecommunication sector’s objectives.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"615-629\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947627/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10947627/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近5G技术在C波段的部署引发了人们对航空雷达高度表可能受到干扰的担忧。C频段的5G系统工作在3.7-3.98 GHz的频率范围内,与雷达高度计的工作频率密切一致,在4.2-4.4 GHz的范围内。这种工作频率上的接近增加了两个系统之间发生干扰的可能性。在本文中,我们探讨了两个主要目标:首先,研究5G C波段与雷达高度计之间的潜在干扰,其次,开发减轻这种干扰的技术。为了实现这些目标,我们在一个真实的场景中评估了干扰,其中部署了多个基站(BSs)来服务于运行跑道。此外,还提出了两种干扰管理技术,并在评估的现实场景中进行了评估。第一个涉及使用功率控制(PC)方法实现自适应BS,该方法旨在通过调整对干扰模型贡献最大的BS的发射功率来减轻干扰,同时对覆盖范围的影响最小。对该技术的修改应用于在覆盖区域而不是单个基站上进行循环。这种技术在这样的场景中很有用,在这种情况下,基站彼此靠近,覆盖范围重叠。最后,提出了一种序列二次规划(SQP)优化算法来优化基站位置,在保持覆盖范围的同时最小化干扰。这项工作探索了5G在C波段和雷达高度表之间潜在干扰的影响,并提出了允许这两个系统共存的实用方法,从而确保航空安全和实现电信部门的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment and Mitigation Approaches of 5G C-Band Interference With Aeronautical Radar Altimeter
The recent deployment of 5G technology in the C band has raised concerns regarding potential interference with aeronautical radar altimeters. The 5G systems in the C band operate within a frequency range of 3.7–3.98 GHz, which closely aligns with the operational frequency of radar altimeters, falling within the range of 4.2–4.4 GHz. This proximity in operational frequencies increases the possibility of interference between the two systems. In this article, we explore two primary objectives: first, to examine the potential for interference between the 5G C band and radar altimeters, and second, to develop techniques for mitigating this interference. To achieve these objectives, we assess interference in a real-world scenario, where multiple base stations (BSs) are deployed to serve an operational runway. In addition, two interference management techniques were proposed and evaluated within the assessed real-life scenario. The first involves the implementation of adaptive BS using the power control (PC) method, which aims to mitigate interference with minimal impact on coverage by adjusting the transmitting power for the BS that contributes the most to the interference model. A modification to this technique was applied to loop over the coverage areas instead of individual BSs. This technique is useful in scenarios, where BSs are implemented close to each other with overlapping coverage. Finally, a sequential quadratic programming (SQP) optimization algorithm was developed to optimize the locations of BSs, minimizing interference while maintaining coverage. This work has explored the impact of potential interference between 5G in the C band and radar altimeters and suggested practical methods to allow the coexistence of both systems, thereby ensuring aviation safety and fulfilling the telecommunication sector’s objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信