Qianfan Wang;Yiwen Wang;Yixin Wang;Jifan Liang;Xiao Ma
{"title":"随机阶梯生成器矩阵代码:编码定理、性能分析和代码设计","authors":"Qianfan Wang;Yiwen Wang;Yixin Wang;Jifan Liang;Xiao Ma","doi":"10.1109/TIT.2025.3541734","DOIUrl":null,"url":null,"abstract":"In this paper, we present a class of codes, referred to as random staircase generator matrix codes (SGMCs), which have staircase-like generator matrices. In the infinite-length region, we prove that the random SGMC is capacity-achieving over binary-input output-symmetric (BIOS) channels. In the finite-length region, we propose the generalized representative ordered statistics decoding with local constraints (LC-ROSD) algorithm for the SGMCs. The most distinguished feature of the SGMCs with LC-ROSD is that the staircase-like matrices enable parallel implementation of the Gaussian elimination (GE), avoiding the serial GE of conventional OSD and supporting a potential low decoding latency, as implied from simulations. To analyze the performance of random SGMCs in the finite-length region, we derive the ensemble weight spectrum and invoke the conventional union bound. We also derive a partially random coding union (RCU) bound, which is tighter than the conventional one and is used as a criterion to design the SGMCs. Staircase-like generator matrices allow us to derive a series of (tighter and tighter) lower bounds based on the second-order Bonferroni inequality with the incremental number of codewords. The numerical results show that the decoding performance can match well with the proposed partially RCU bound for different code rates and different profiles. The numerical results also show that the tailored SGMCs with the LC-ROSD algorithm can approach the finite-length performance bound, outperforming the 5G low-density parity-check (LDPC) codes, 5G polar codes, and Reed-Muller (RM) codes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3497-3509"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Staircase Generator Matrix Codes: Coding Theorem, Performance Analysis, and Code Design\",\"authors\":\"Qianfan Wang;Yiwen Wang;Yixin Wang;Jifan Liang;Xiao Ma\",\"doi\":\"10.1109/TIT.2025.3541734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a class of codes, referred to as random staircase generator matrix codes (SGMCs), which have staircase-like generator matrices. In the infinite-length region, we prove that the random SGMC is capacity-achieving over binary-input output-symmetric (BIOS) channels. In the finite-length region, we propose the generalized representative ordered statistics decoding with local constraints (LC-ROSD) algorithm for the SGMCs. The most distinguished feature of the SGMCs with LC-ROSD is that the staircase-like matrices enable parallel implementation of the Gaussian elimination (GE), avoiding the serial GE of conventional OSD and supporting a potential low decoding latency, as implied from simulations. To analyze the performance of random SGMCs in the finite-length region, we derive the ensemble weight spectrum and invoke the conventional union bound. We also derive a partially random coding union (RCU) bound, which is tighter than the conventional one and is used as a criterion to design the SGMCs. Staircase-like generator matrices allow us to derive a series of (tighter and tighter) lower bounds based on the second-order Bonferroni inequality with the incremental number of codewords. The numerical results show that the decoding performance can match well with the proposed partially RCU bound for different code rates and different profiles. The numerical results also show that the tailored SGMCs with the LC-ROSD algorithm can approach the finite-length performance bound, outperforming the 5G low-density parity-check (LDPC) codes, 5G polar codes, and Reed-Muller (RM) codes.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3497-3509\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884829/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10884829/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Random Staircase Generator Matrix Codes: Coding Theorem, Performance Analysis, and Code Design
In this paper, we present a class of codes, referred to as random staircase generator matrix codes (SGMCs), which have staircase-like generator matrices. In the infinite-length region, we prove that the random SGMC is capacity-achieving over binary-input output-symmetric (BIOS) channels. In the finite-length region, we propose the generalized representative ordered statistics decoding with local constraints (LC-ROSD) algorithm for the SGMCs. The most distinguished feature of the SGMCs with LC-ROSD is that the staircase-like matrices enable parallel implementation of the Gaussian elimination (GE), avoiding the serial GE of conventional OSD and supporting a potential low decoding latency, as implied from simulations. To analyze the performance of random SGMCs in the finite-length region, we derive the ensemble weight spectrum and invoke the conventional union bound. We also derive a partially random coding union (RCU) bound, which is tighter than the conventional one and is used as a criterion to design the SGMCs. Staircase-like generator matrices allow us to derive a series of (tighter and tighter) lower bounds based on the second-order Bonferroni inequality with the incremental number of codewords. The numerical results show that the decoding performance can match well with the proposed partially RCU bound for different code rates and different profiles. The numerical results also show that the tailored SGMCs with the LC-ROSD algorithm can approach the finite-length performance bound, outperforming the 5G low-density parity-check (LDPC) codes, 5G polar codes, and Reed-Muller (RM) codes.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.