{"title":"用于提高系统ECC可靠性的片上BCH故障绑定码","authors":"Seongyoon Kang;Chaehyeon Shin;Jongsun Park","doi":"10.1109/TVLSI.2024.3523899","DOIUrl":null,"url":null,"abstract":"While continuous dynamic random access memory (DRAM) scaling may require an on-die error correction code (ECC) with enhanced correction capability, a double error correcting code with fault bounding scheme has not been explored. In this brief, we present the fault bounding on-die Bose-Chaudhuri–Hocquenghem (BCH) code that improves the compatibility with one-symbol error correcting system ECC used in dual data rate five (DDR5) dual in-line memory module (DIMM). By modifying the H matrix of BCH code, the proposed decoding method determines the fault boundary within which burst errors occur, effectively preventing the spread of these errors across fault boundaries. A comparison of bounded rates with conventional codes illustrates the enhanced compatibility with system ECC. The encoder and decoder of the proposed code have been implemented using a 28-nm CMOS process to demonstrate the hardware cost.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 5","pages":"1482-1486"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Bounding On-Die BCH Codes for Improving Reliability of System ECC\",\"authors\":\"Seongyoon Kang;Chaehyeon Shin;Jongsun Park\",\"doi\":\"10.1109/TVLSI.2024.3523899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While continuous dynamic random access memory (DRAM) scaling may require an on-die error correction code (ECC) with enhanced correction capability, a double error correcting code with fault bounding scheme has not been explored. In this brief, we present the fault bounding on-die Bose-Chaudhuri–Hocquenghem (BCH) code that improves the compatibility with one-symbol error correcting system ECC used in dual data rate five (DDR5) dual in-line memory module (DIMM). By modifying the H matrix of BCH code, the proposed decoding method determines the fault boundary within which burst errors occur, effectively preventing the spread of these errors across fault boundaries. A comparison of bounded rates with conventional codes illustrates the enhanced compatibility with system ECC. The encoder and decoder of the proposed code have been implemented using a 28-nm CMOS process to demonstrate the hardware cost.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 5\",\"pages\":\"1482-1486\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10832420/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10832420/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Fault Bounding On-Die BCH Codes for Improving Reliability of System ECC
While continuous dynamic random access memory (DRAM) scaling may require an on-die error correction code (ECC) with enhanced correction capability, a double error correcting code with fault bounding scheme has not been explored. In this brief, we present the fault bounding on-die Bose-Chaudhuri–Hocquenghem (BCH) code that improves the compatibility with one-symbol error correcting system ECC used in dual data rate five (DDR5) dual in-line memory module (DIMM). By modifying the H matrix of BCH code, the proposed decoding method determines the fault boundary within which burst errors occur, effectively preventing the spread of these errors across fault boundaries. A comparison of bounded rates with conventional codes illustrates the enhanced compatibility with system ECC. The encoder and decoder of the proposed code have been implemented using a 28-nm CMOS process to demonstrate the hardware cost.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.