Chenhe Lu , Wenjing Chen , Heng Chen , Gang Xing , Jiayu Ma , Hui Zhou , Linglong Qin , Liu Da , Shiping Sun , Peng Peng , Haimin Li , Yulan Jin , Yan Yan , Shiyue Pan , Weiren Dong , Jinyan Gu , Jiyong Zhou
{"title":"猪嵌合PCV Cap蛋白重组伪狂犬病毒的免疫学特性","authors":"Chenhe Lu , Wenjing Chen , Heng Chen , Gang Xing , Jiayu Ma , Hui Zhou , Linglong Qin , Liu Da , Shiping Sun , Peng Peng , Haimin Li , Yulan Jin , Yan Yan , Shiyue Pan , Weiren Dong , Jinyan Gu , Jiyong Zhou","doi":"10.1016/j.vetmic.2025.110529","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine circovirus type 2 (PCV2) is one of the main pathogens causing porcine circovirus-associated diseases (PCVAD). We recently reported the immunogenicity of the recombinant PRV with an envelope-embedded Cap protein of PCV2 (PRV-Cap) in mice. Here, we further evaluated the immunoprotective efficacy of PRV-Cap virus in pigs. Following vaccination, the PRV-Cap stimulated the production of neutralizing antibodies against PRV and PCV2, along with protected piglets from the challenge of the lethal PRV, the virulent PCV2b and PCV2d. Peripheral blood mononuclear cells analysis revealed that PRV-Cap virus effectively induced proliferation and activation of CD4 and CD8 T cells, as well as an increase in T follicular helper cells, although γδ T and B cells did not show significant differences. Compared to DMEM control piglets, the expanded CD4 and CD8 T cells exhibited an effector memory T cell phenotype, and <em>in vitro</em> stimulation led to PRV- and PCV2-specific IFN-γ and TNF-α secretion, peaking at 21 days post-immunization. In summary, PRV-Cap virus effectively prevents PRV, PCV2b and PCV2d challenges in piglets by simultaneously inducing both PRV- and PCV2-specific humoral and cellular immunity, indicating that PRV-Cap virus is a promising and safe candidate vaccine for combined PRV and PCV2 immunization.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"305 ","pages":"Article 110529"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunological characteristics of the recombinant pseudorabies virus with chimeric PCV Cap protein in pigs\",\"authors\":\"Chenhe Lu , Wenjing Chen , Heng Chen , Gang Xing , Jiayu Ma , Hui Zhou , Linglong Qin , Liu Da , Shiping Sun , Peng Peng , Haimin Li , Yulan Jin , Yan Yan , Shiyue Pan , Weiren Dong , Jinyan Gu , Jiyong Zhou\",\"doi\":\"10.1016/j.vetmic.2025.110529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Porcine circovirus type 2 (PCV2) is one of the main pathogens causing porcine circovirus-associated diseases (PCVAD). We recently reported the immunogenicity of the recombinant PRV with an envelope-embedded Cap protein of PCV2 (PRV-Cap) in mice. Here, we further evaluated the immunoprotective efficacy of PRV-Cap virus in pigs. Following vaccination, the PRV-Cap stimulated the production of neutralizing antibodies against PRV and PCV2, along with protected piglets from the challenge of the lethal PRV, the virulent PCV2b and PCV2d. Peripheral blood mononuclear cells analysis revealed that PRV-Cap virus effectively induced proliferation and activation of CD4 and CD8 T cells, as well as an increase in T follicular helper cells, although γδ T and B cells did not show significant differences. Compared to DMEM control piglets, the expanded CD4 and CD8 T cells exhibited an effector memory T cell phenotype, and <em>in vitro</em> stimulation led to PRV- and PCV2-specific IFN-γ and TNF-α secretion, peaking at 21 days post-immunization. In summary, PRV-Cap virus effectively prevents PRV, PCV2b and PCV2d challenges in piglets by simultaneously inducing both PRV- and PCV2-specific humoral and cellular immunity, indicating that PRV-Cap virus is a promising and safe candidate vaccine for combined PRV and PCV2 immunization.</div></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"305 \",\"pages\":\"Article 110529\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113525001646\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525001646","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Immunological characteristics of the recombinant pseudorabies virus with chimeric PCV Cap protein in pigs
Porcine circovirus type 2 (PCV2) is one of the main pathogens causing porcine circovirus-associated diseases (PCVAD). We recently reported the immunogenicity of the recombinant PRV with an envelope-embedded Cap protein of PCV2 (PRV-Cap) in mice. Here, we further evaluated the immunoprotective efficacy of PRV-Cap virus in pigs. Following vaccination, the PRV-Cap stimulated the production of neutralizing antibodies against PRV and PCV2, along with protected piglets from the challenge of the lethal PRV, the virulent PCV2b and PCV2d. Peripheral blood mononuclear cells analysis revealed that PRV-Cap virus effectively induced proliferation and activation of CD4 and CD8 T cells, as well as an increase in T follicular helper cells, although γδ T and B cells did not show significant differences. Compared to DMEM control piglets, the expanded CD4 and CD8 T cells exhibited an effector memory T cell phenotype, and in vitro stimulation led to PRV- and PCV2-specific IFN-γ and TNF-α secretion, peaking at 21 days post-immunization. In summary, PRV-Cap virus effectively prevents PRV, PCV2b and PCV2d challenges in piglets by simultaneously inducing both PRV- and PCV2-specific humoral and cellular immunity, indicating that PRV-Cap virus is a promising and safe candidate vaccine for combined PRV and PCV2 immunization.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.