Yifan Chen , Shite Lin , Weisheng Han , Youwen Chen , Qijun Zhang , La Hu , Wenbiao Zhang , Jingda Huang
{"title":"抗菌阻燃tempo氧化纤维素纳米纤维/壳聚糖基海绵,高效捕获PM2.5","authors":"Yifan Chen , Shite Lin , Weisheng Han , Youwen Chen , Qijun Zhang , La Hu , Wenbiao Zhang , Jingda Huang","doi":"10.1016/j.carbpol.2025.123642","DOIUrl":null,"url":null,"abstract":"<div><div>PM2.5, which can carry many bacteria, poses a serious threat to health when inhaled. Therefore, developing porous materials with efficient filtration and antibacterial properties is essential for preventing the invasion of PM2.5 on respiratory health. In this study, we designed a multifunctional sponge filter through the synergistic integration of TEMPO-oxidized cellulose nanofibrils (TCNF), chitosan (CS), graphene oxide (GO), and lignin hybrid particles. A robust three-dimensional network was constructed via amide cross-linking between TCNF and CS, endowing the sponge with exceptional mechanical stability. GO enhances the PM2.5 interception efficiency through electrostatic adsorption. Additionally, we introduce lignin nanoparticles (LNP) as carriers for growing zinc oxide (ZnO), forming organic-inorganic hybrid particles (LNP@ZnO). This approach minimizes the negative impact of ZnO on the mechanical properties of the sponge while enhancing antibacterial performance. The resulting sponge filter demonstrates high PM2.5 filtration efficiency (99.14 %) with low pressure drop (38 Pa), excellent antibacterial properties against <em>E. coli</em> (92.63 %) and <em>S. aureus</em> (89.05 %), and outstanding flame-retardant properties (LOI value of 27.1 %). This study addresses the limitations of existing systems by minimizing the trade-off between antibacterial performance and mechanical strength, offering a novel approach for the design of advanced air filtration materials.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"361 ","pages":"Article 123642"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial and flame-retardant TEMPO-oxidized cellulose nanofibrils/chitosan-based sponge for efficient PM2.5 capture\",\"authors\":\"Yifan Chen , Shite Lin , Weisheng Han , Youwen Chen , Qijun Zhang , La Hu , Wenbiao Zhang , Jingda Huang\",\"doi\":\"10.1016/j.carbpol.2025.123642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>PM2.5, which can carry many bacteria, poses a serious threat to health when inhaled. Therefore, developing porous materials with efficient filtration and antibacterial properties is essential for preventing the invasion of PM2.5 on respiratory health. In this study, we designed a multifunctional sponge filter through the synergistic integration of TEMPO-oxidized cellulose nanofibrils (TCNF), chitosan (CS), graphene oxide (GO), and lignin hybrid particles. A robust three-dimensional network was constructed via amide cross-linking between TCNF and CS, endowing the sponge with exceptional mechanical stability. GO enhances the PM2.5 interception efficiency through electrostatic adsorption. Additionally, we introduce lignin nanoparticles (LNP) as carriers for growing zinc oxide (ZnO), forming organic-inorganic hybrid particles (LNP@ZnO). This approach minimizes the negative impact of ZnO on the mechanical properties of the sponge while enhancing antibacterial performance. The resulting sponge filter demonstrates high PM2.5 filtration efficiency (99.14 %) with low pressure drop (38 Pa), excellent antibacterial properties against <em>E. coli</em> (92.63 %) and <em>S. aureus</em> (89.05 %), and outstanding flame-retardant properties (LOI value of 27.1 %). This study addresses the limitations of existing systems by minimizing the trade-off between antibacterial performance and mechanical strength, offering a novel approach for the design of advanced air filtration materials.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"361 \",\"pages\":\"Article 123642\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725004242\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725004242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Antibacterial and flame-retardant TEMPO-oxidized cellulose nanofibrils/chitosan-based sponge for efficient PM2.5 capture
PM2.5, which can carry many bacteria, poses a serious threat to health when inhaled. Therefore, developing porous materials with efficient filtration and antibacterial properties is essential for preventing the invasion of PM2.5 on respiratory health. In this study, we designed a multifunctional sponge filter through the synergistic integration of TEMPO-oxidized cellulose nanofibrils (TCNF), chitosan (CS), graphene oxide (GO), and lignin hybrid particles. A robust three-dimensional network was constructed via amide cross-linking between TCNF and CS, endowing the sponge with exceptional mechanical stability. GO enhances the PM2.5 interception efficiency through electrostatic adsorption. Additionally, we introduce lignin nanoparticles (LNP) as carriers for growing zinc oxide (ZnO), forming organic-inorganic hybrid particles (LNP@ZnO). This approach minimizes the negative impact of ZnO on the mechanical properties of the sponge while enhancing antibacterial performance. The resulting sponge filter demonstrates high PM2.5 filtration efficiency (99.14 %) with low pressure drop (38 Pa), excellent antibacterial properties against E. coli (92.63 %) and S. aureus (89.05 %), and outstanding flame-retardant properties (LOI value of 27.1 %). This study addresses the limitations of existing systems by minimizing the trade-off between antibacterial performance and mechanical strength, offering a novel approach for the design of advanced air filtration materials.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.