Sheng Chen, Lei Zhu, Zhinong Wei, Guoqiang Sun, Yizhou Zhou
{"title":"图卷积网络在电力-氢气一体化系统中氢设施电力可行运行区域预测中的应用","authors":"Sheng Chen, Lei Zhu, Zhinong Wei, Guoqiang Sun, Yizhou Zhou","doi":"10.1016/j.energy.2025.136107","DOIUrl":null,"url":null,"abstract":"<div><div>The integrated operation of electricity systems and power to hydrogen (PtH) facilities with direct hydrogen injection into natural gas pipeline systems provides important flexibility to accommodate the intermittent outputs of renewable energy sources. However, no efficient approach has yet been developed to quantify the feasible operating region of PtH facilities to ensure the stable and safe operations of both electric power and natural gas systems. The present work addresses this issue by analyzing the feasible operating regions of PtH facilities under constraints considered for both electric power and natural gas systems. A graph convolutional network (GCN) is trained to predict the nonlinear flows of electricity, hydrogen, and natural gas under a wide range of circumstances, and these predictions are employed to generate numerous feasible operating points efficiently. The GCN approach collects PtH operational data associated with different natural gas network topologies. The convex hull approach is then employed to construct the feasible operating region representing the smallest convex set that contains all operating points. The proposed models and methods are validated based on the numerical results obtained for an integrated IEEE 118-node power system and a 25-node natural gas system.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"326 ","pages":"Article 136107"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a graph convolutional network for predicting the feasible operating regions of power to hydrogen facilities in integrated electricity and hydrogen-gas systems\",\"authors\":\"Sheng Chen, Lei Zhu, Zhinong Wei, Guoqiang Sun, Yizhou Zhou\",\"doi\":\"10.1016/j.energy.2025.136107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integrated operation of electricity systems and power to hydrogen (PtH) facilities with direct hydrogen injection into natural gas pipeline systems provides important flexibility to accommodate the intermittent outputs of renewable energy sources. However, no efficient approach has yet been developed to quantify the feasible operating region of PtH facilities to ensure the stable and safe operations of both electric power and natural gas systems. The present work addresses this issue by analyzing the feasible operating regions of PtH facilities under constraints considered for both electric power and natural gas systems. A graph convolutional network (GCN) is trained to predict the nonlinear flows of electricity, hydrogen, and natural gas under a wide range of circumstances, and these predictions are employed to generate numerous feasible operating points efficiently. The GCN approach collects PtH operational data associated with different natural gas network topologies. The convex hull approach is then employed to construct the feasible operating region representing the smallest convex set that contains all operating points. The proposed models and methods are validated based on the numerical results obtained for an integrated IEEE 118-node power system and a 25-node natural gas system.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"326 \",\"pages\":\"Article 136107\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225017499\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225017499","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Application of a graph convolutional network for predicting the feasible operating regions of power to hydrogen facilities in integrated electricity and hydrogen-gas systems
The integrated operation of electricity systems and power to hydrogen (PtH) facilities with direct hydrogen injection into natural gas pipeline systems provides important flexibility to accommodate the intermittent outputs of renewable energy sources. However, no efficient approach has yet been developed to quantify the feasible operating region of PtH facilities to ensure the stable and safe operations of both electric power and natural gas systems. The present work addresses this issue by analyzing the feasible operating regions of PtH facilities under constraints considered for both electric power and natural gas systems. A graph convolutional network (GCN) is trained to predict the nonlinear flows of electricity, hydrogen, and natural gas under a wide range of circumstances, and these predictions are employed to generate numerous feasible operating points efficiently. The GCN approach collects PtH operational data associated with different natural gas network topologies. The convex hull approach is then employed to construct the feasible operating region representing the smallest convex set that contains all operating points. The proposed models and methods are validated based on the numerical results obtained for an integrated IEEE 118-node power system and a 25-node natural gas system.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.