{"title":"Gd3+掺杂硼磷酸钡锂玻璃:利用“r编程:tgcd”进行剂量学应用的结构、光学和热释光发光曲线研究","authors":"Harjeet Kaur , Navjeet Kaur , Supreet Pal Singh","doi":"10.1016/j.materresbull.2025.113499","DOIUrl":null,"url":null,"abstract":"<div><div>Gd<sup>3+</sup>-doped lithium barium borophosphate glasses were synthesized to explore their feasibility for monitoring radiation doses using thermoluminescence technique. X-ray diffraction exhibited the amorphous glassy state and Fourier transform infrared spectra revealed the dual contribution of borate and phosphate vibrational bands. Optical UV–Visible spectra displayed variation with the intercalated Gd<sup>3+</sup> ions. Thermoluminescence glow curve evaluation using specialized ‘R-programming: tgcd’ software facilitated the determination of different kinetic parameters using Chen’s peak shape approach. Glow curve deconvolution indicate the presence of three overlapping TL peaks, attaining a minimum figure of merit value of 0.80 for LBPGd0.8 glass. The dose-response study for LBPGd0.8 showed a strong linearity and high sensitivity, with a correlation coefficient R<sup>2</sup> = 0.99611 for gamma dose ranging from 0.05-10 kGy. Moreover, LBPGd0.8 sample demonstrated great reusability and low fading, making it appropriate for quantitative assessment of absorbed doses in food irradiation, medical diagnosis, and personnel radiation exposure dosimetry.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"190 ","pages":"Article 113499"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gd3+-doped lithium barium borophosphate glasses: structural, optical and thermoluminescence glow curve investigation utilizing \\\"R-programming: tgcd\\\" for dosimetry applications\",\"authors\":\"Harjeet Kaur , Navjeet Kaur , Supreet Pal Singh\",\"doi\":\"10.1016/j.materresbull.2025.113499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gd<sup>3+</sup>-doped lithium barium borophosphate glasses were synthesized to explore their feasibility for monitoring radiation doses using thermoluminescence technique. X-ray diffraction exhibited the amorphous glassy state and Fourier transform infrared spectra revealed the dual contribution of borate and phosphate vibrational bands. Optical UV–Visible spectra displayed variation with the intercalated Gd<sup>3+</sup> ions. Thermoluminescence glow curve evaluation using specialized ‘R-programming: tgcd’ software facilitated the determination of different kinetic parameters using Chen’s peak shape approach. Glow curve deconvolution indicate the presence of three overlapping TL peaks, attaining a minimum figure of merit value of 0.80 for LBPGd0.8 glass. The dose-response study for LBPGd0.8 showed a strong linearity and high sensitivity, with a correlation coefficient R<sup>2</sup> = 0.99611 for gamma dose ranging from 0.05-10 kGy. Moreover, LBPGd0.8 sample demonstrated great reusability and low fading, making it appropriate for quantitative assessment of absorbed doses in food irradiation, medical diagnosis, and personnel radiation exposure dosimetry.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"190 \",\"pages\":\"Article 113499\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825002077\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825002077","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Gd3+-doped lithium barium borophosphate glasses: structural, optical and thermoluminescence glow curve investigation utilizing "R-programming: tgcd" for dosimetry applications
Gd3+-doped lithium barium borophosphate glasses were synthesized to explore their feasibility for monitoring radiation doses using thermoluminescence technique. X-ray diffraction exhibited the amorphous glassy state and Fourier transform infrared spectra revealed the dual contribution of borate and phosphate vibrational bands. Optical UV–Visible spectra displayed variation with the intercalated Gd3+ ions. Thermoluminescence glow curve evaluation using specialized ‘R-programming: tgcd’ software facilitated the determination of different kinetic parameters using Chen’s peak shape approach. Glow curve deconvolution indicate the presence of three overlapping TL peaks, attaining a minimum figure of merit value of 0.80 for LBPGd0.8 glass. The dose-response study for LBPGd0.8 showed a strong linearity and high sensitivity, with a correlation coefficient R2 = 0.99611 for gamma dose ranging from 0.05-10 kGy. Moreover, LBPGd0.8 sample demonstrated great reusability and low fading, making it appropriate for quantitative assessment of absorbed doses in food irradiation, medical diagnosis, and personnel radiation exposure dosimetry.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.