{"title":"上睑下垂为脓毒性心肌病的治疗提供了新的靶点","authors":"Pengsi Zhou, Mengxue Liu, Tao Lv","doi":"10.1016/j.tice.2025.102930","DOIUrl":null,"url":null,"abstract":"<div><div>Sepsis-induced cardiac dysfunction, usually termed sepsis-induced cardiomyopathy or septic cardiomyopathy(SCM), is developed in approximately 70 % of the patients with sepsis, making it is a major concern for sepsis patients. However, the pathogenesis of SCM remain incompletely understood. Ferroptosis, a newly identified mechanism of regulated cell death, characterized by a decline in antioxidant capacity, iron accumulation, and lipid peroxidation(LPO), is involved in sepsis and SCM. Moreover, ferroptosis inhibitors confer a novel therapeutic regimen in SCM. In this Review, we first summarizes the core mechanism of ferroptosis, with an emphasis on how best to interpret ferroptosis leads to the genesis of SCM. We then highlights our focus on the emerging different types of therapeutic ferroptosis inhibitors and summarizes their pharmacological beneficial effect to treat SCM. This review highlights a novel potential therapeutic strategy for SCM by pharmacologically inhibiting ferroptosis.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"95 ","pages":"Article 102930"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis targeting offers a therapeutic target for septic cardiomyopathy\",\"authors\":\"Pengsi Zhou, Mengxue Liu, Tao Lv\",\"doi\":\"10.1016/j.tice.2025.102930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sepsis-induced cardiac dysfunction, usually termed sepsis-induced cardiomyopathy or septic cardiomyopathy(SCM), is developed in approximately 70 % of the patients with sepsis, making it is a major concern for sepsis patients. However, the pathogenesis of SCM remain incompletely understood. Ferroptosis, a newly identified mechanism of regulated cell death, characterized by a decline in antioxidant capacity, iron accumulation, and lipid peroxidation(LPO), is involved in sepsis and SCM. Moreover, ferroptosis inhibitors confer a novel therapeutic regimen in SCM. In this Review, we first summarizes the core mechanism of ferroptosis, with an emphasis on how best to interpret ferroptosis leads to the genesis of SCM. We then highlights our focus on the emerging different types of therapeutic ferroptosis inhibitors and summarizes their pharmacological beneficial effect to treat SCM. This review highlights a novel potential therapeutic strategy for SCM by pharmacologically inhibiting ferroptosis.</div></div>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"95 \",\"pages\":\"Article 102930\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816625002101\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625002101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Ferroptosis targeting offers a therapeutic target for septic cardiomyopathy
Sepsis-induced cardiac dysfunction, usually termed sepsis-induced cardiomyopathy or septic cardiomyopathy(SCM), is developed in approximately 70 % of the patients with sepsis, making it is a major concern for sepsis patients. However, the pathogenesis of SCM remain incompletely understood. Ferroptosis, a newly identified mechanism of regulated cell death, characterized by a decline in antioxidant capacity, iron accumulation, and lipid peroxidation(LPO), is involved in sepsis and SCM. Moreover, ferroptosis inhibitors confer a novel therapeutic regimen in SCM. In this Review, we first summarizes the core mechanism of ferroptosis, with an emphasis on how best to interpret ferroptosis leads to the genesis of SCM. We then highlights our focus on the emerging different types of therapeutic ferroptosis inhibitors and summarizes their pharmacological beneficial effect to treat SCM. This review highlights a novel potential therapeutic strategy for SCM by pharmacologically inhibiting ferroptosis.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.