Liannishang Li , Lei Huang , Mingxi Li , Shaoying He , Huo Xu , Chunhua Lu , Chao Xing
{"title":"用于细胞内相关DNA修复酶成像的通用和可编程双模式逻辑金纳米耀斑","authors":"Liannishang Li , Lei Huang , Mingxi Li , Shaoying He , Huo Xu , Chunhua Lu , Chao Xing","doi":"10.1016/j.bios.2025.117501","DOIUrl":null,"url":null,"abstract":"<div><div>In situ monitoring of correlated DNA repair enzyme activities in living cells is crucial for clinical and biomedical research. Here, we introduce a versatile, programmable dual-mode logic gold nanoflares strategy for OR/AND gate logic imaging the activity of apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) within cells. The logic gold nanoflares were designed via conjugating enzyme-activatable sites modified branched double-stranded DNA structures to gold nanoparticles. These meticulously engineered nanoflares specifically respond to APE1 and FEN1 in living cells through logic biocomputing, emitting a fluorescent signal that allows for the sensitive monitor of APE1 and FEN1 activities. In vitro experiments demonstrate that the nanoflares are highly biocompatible and can make effectively and sensitively judgments on the two enzyme targets across various cancer cell lines. This OR/AND dual-mode logic gold nanoflare strategy offers a straightforward tool for the comprehensive analysis of multiple DNA repair enzymes, presenting promising applications in disease diagnosis, drug efficacy evaluation, and programmable therapeutics.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"282 ","pages":"Article 117501"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Versatile and programmable dual-mode logic gold nanoflares for intracellular correlated DNA repair enzymes imaging\",\"authors\":\"Liannishang Li , Lei Huang , Mingxi Li , Shaoying He , Huo Xu , Chunhua Lu , Chao Xing\",\"doi\":\"10.1016/j.bios.2025.117501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In situ monitoring of correlated DNA repair enzyme activities in living cells is crucial for clinical and biomedical research. Here, we introduce a versatile, programmable dual-mode logic gold nanoflares strategy for OR/AND gate logic imaging the activity of apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) within cells. The logic gold nanoflares were designed via conjugating enzyme-activatable sites modified branched double-stranded DNA structures to gold nanoparticles. These meticulously engineered nanoflares specifically respond to APE1 and FEN1 in living cells through logic biocomputing, emitting a fluorescent signal that allows for the sensitive monitor of APE1 and FEN1 activities. In vitro experiments demonstrate that the nanoflares are highly biocompatible and can make effectively and sensitively judgments on the two enzyme targets across various cancer cell lines. This OR/AND dual-mode logic gold nanoflare strategy offers a straightforward tool for the comprehensive analysis of multiple DNA repair enzymes, presenting promising applications in disease diagnosis, drug efficacy evaluation, and programmable therapeutics.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"282 \",\"pages\":\"Article 117501\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325003756\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325003756","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Versatile and programmable dual-mode logic gold nanoflares for intracellular correlated DNA repair enzymes imaging
In situ monitoring of correlated DNA repair enzyme activities in living cells is crucial for clinical and biomedical research. Here, we introduce a versatile, programmable dual-mode logic gold nanoflares strategy for OR/AND gate logic imaging the activity of apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) within cells. The logic gold nanoflares were designed via conjugating enzyme-activatable sites modified branched double-stranded DNA structures to gold nanoparticles. These meticulously engineered nanoflares specifically respond to APE1 and FEN1 in living cells through logic biocomputing, emitting a fluorescent signal that allows for the sensitive monitor of APE1 and FEN1 activities. In vitro experiments demonstrate that the nanoflares are highly biocompatible and can make effectively and sensitively judgments on the two enzyme targets across various cancer cell lines. This OR/AND dual-mode logic gold nanoflare strategy offers a straightforward tool for the comprehensive analysis of multiple DNA repair enzymes, presenting promising applications in disease diagnosis, drug efficacy evaluation, and programmable therapeutics.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.