非均匀质量密度支结构的本征振动

IF 1.2 3区 数学 Q1 MATHEMATICS
Yuriy Golovaty , Delfina Gómez , Maria-Eugenia Pérez-Martínez
{"title":"非均匀质量密度支结构的本征振动","authors":"Yuriy Golovaty ,&nbsp;Delfina Gómez ,&nbsp;Maria-Eugenia Pérez-Martínez","doi":"10.1016/j.jmaa.2025.129586","DOIUrl":null,"url":null,"abstract":"<div><div>We deal with a spectral problem for the Laplace-Beltrami operator posed on a stratified set Ω which is composed of smooth surfaces joined along a line <em>γ</em>, <em>the junction</em>. Through this junction we impose the Kirchhoff-type vertex conditions, which imply the continuity of the solutions and some balance for normal derivatives, and Neumann conditions on the rest of the boundary of the surfaces. Assuming that the density is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>m</mi></mrow></msup><mo>)</mo></math></span> along small bands of width <span><math><mi>O</mi><mo>(</mo><mi>ε</mi><mo>)</mo></math></span>, which collapse into the line <em>γ</em> as <em>ε</em> tends to zero, and it is <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> outside these bands, we address the asymptotic behavior, as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, of the eigenvalues and of the corresponding eigenfunctions for a parameter <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. We also study the asymptotics for high frequencies when <span><math><mi>m</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129586"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On eigenvibrations of branched structures with heterogeneous mass density\",\"authors\":\"Yuriy Golovaty ,&nbsp;Delfina Gómez ,&nbsp;Maria-Eugenia Pérez-Martínez\",\"doi\":\"10.1016/j.jmaa.2025.129586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We deal with a spectral problem for the Laplace-Beltrami operator posed on a stratified set Ω which is composed of smooth surfaces joined along a line <em>γ</em>, <em>the junction</em>. Through this junction we impose the Kirchhoff-type vertex conditions, which imply the continuity of the solutions and some balance for normal derivatives, and Neumann conditions on the rest of the boundary of the surfaces. Assuming that the density is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mi>m</mi></mrow></msup><mo>)</mo></math></span> along small bands of width <span><math><mi>O</mi><mo>(</mo><mi>ε</mi><mo>)</mo></math></span>, which collapse into the line <em>γ</em> as <em>ε</em> tends to zero, and it is <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> outside these bands, we address the asymptotic behavior, as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, of the eigenvalues and of the corresponding eigenfunctions for a parameter <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>. We also study the asymptotics for high frequencies when <span><math><mi>m</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129586\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003671\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003671","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们处理了Laplace-Beltrami算子的谱问题,该算子在一个分层集合Ω上,该集合由沿连接线γ连接的光滑表面组成。通过这个连接点,我们将kirchhoff型顶点条件和Neumann条件施加到曲面边界的其余部分,这意味着解的连续性和法向导数的一些平衡。假设沿宽度为O(ε)的小带的密度为O(ε−m),当ε趋于零时坍缩成直线γ,在这些带外密度为O(1),我们处理了参数m≥1时特征值和相应特征函数在ε→0时的渐近行为。我们还研究了当m∈(1,2)时高频的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On eigenvibrations of branched structures with heterogeneous mass density
We deal with a spectral problem for the Laplace-Beltrami operator posed on a stratified set Ω which is composed of smooth surfaces joined along a line γ, the junction. Through this junction we impose the Kirchhoff-type vertex conditions, which imply the continuity of the solutions and some balance for normal derivatives, and Neumann conditions on the rest of the boundary of the surfaces. Assuming that the density is O(εm) along small bands of width O(ε), which collapse into the line γ as ε tends to zero, and it is O(1) outside these bands, we address the asymptotic behavior, as ε0, of the eigenvalues and of the corresponding eigenfunctions for a parameter m1. We also study the asymptotics for high frequencies when m(1,2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信